Dirk Kutscher

Personal web page

Information-Centric Long-Range Networking: Re-Imagining LoRaWAN

without comments

LoRaWAN is a popular low-power long-range communication system for IoT that is suitable for single-site deployments as well as for larger networks. It consists of LoRa, a PHY layer that allows for radio communication between 2 and 14 km, and higher-layer protocols mainly to upload IoT data to a serverbased infrastructure. These characteristics make LoRaWAN a promising option for many urban and rural IoT scenarios.

The LoRaWAN network design incurs, however, four notable shortcomings:

  1. LoRaWAN is heavily optimized towards retrieving data from constrained Nodes. Sending data to Nodes is expensive and involves significant latencies. Many networks such as the popular community The Things Network (TTN) thus deprecate sending data to Nodes above a very low message rate, making LoRaWAN unsuitable for most control scenarios.
  2. LoRaWAN has not been designed with the objective to provide a platform for Internet protocols. It is possible to use IP and adaptation layers on top of LoRaWAN, albeit very inefficiently.
  3. The whole LoRaWAN system is a vertically integrated stack that leads to inflexible system designs and inefficiencies. For example, all communication is channeled through LoRaWAN Gateways as well as Application- and Network Servers that interconnect with applications.
  4. The centralization and lock-in into vertical protocol stacks challenge data sharing (between users) and the creation of distributed applications (across LoRa island and the Internet).

A new LoraWAN architecture based on DSME and ICN

In our IFIP Networking 2022 paper "Long-Range ICN for the IoT: Exploring a LoRa System Design", Peter Kietzmann, José Alamos, Thomas C. Schmidt, Matthias Wählisch, and myself aim for a better integration of the LoRa-based Internet of Things into the remaining Internet. We base our system design on the following four requirements:

  1. enabling LoRa networks and Nodes in these networks to communicate directly with hosts on the Internet;
  2. empowering LoRa Gateways to act as routers, without the need to employ Network Servers and to tunnel all traffic to or from them;
  3. enabling secure data sharing and wireless Node control; and
  4. maintaining the important power conservation and robustness properties of current LoRaWAN systems.

To achieve these goals without abandoning the benefits of the LoRA PHY (i.e., a robust, energy-efficient long-range communication channel) we developed both a complete redesign of the MAC layer and a data-oriented network layer on top. Our work leverages two key building blocks.

  1. the Deterministic and Synchronous Multi-Channel Extension (DSME) extension to IEEE 802.15.4e, a flexible MAC layer that consists of contention-access and contention-free periods, and,
  2. the Information-Centric Networking (ICN) protocol NDN, which provides secure access to named data in networks.

LoRa and ICN

Prior work showed that ICN provides clear benefits over traditional IP and CoAP or MQTT stacks in the IoT. Our research showed that ICN is also well-suited for LoRa networks because its hop-wise data replication increases robustness and flexibility while reducing retransmission load. This enhances adaptivity and decreases communication overhead, whereas link capacity is scarce with LoRa. Named and authenticated data access enables location-independence since applications can access named data directly, without resorting to lower-layer addresses. Furthermore, built-in caches in ICN facilitate more efficient LoRa networks. Requests that are satisfied by an in-network cache

  1. reduce link utilization, to improve on air time and wireless interference;
  2. facilitate Node sleep; and
  3. reduce long round trips introduced by slow transmissions.

Results

In our paper, we describe

  1. the design of ICN over LoRa, including a suitable DSME configuration and options for mapping ICN messages to DSME;
  2. a complete simulation environment in OMNeT++ that combines ccnSim as an ICN stack, openDSME as a MAC layer, and FLoRa to simulate LoRa-type devices—and a demonstration of our adaptation layers in that system.
  3. Preferred mappings and additional Node requirements for implementing relevant ICN interaction patterns, based on our simulation results.

Code and documentation is available at https://github.com/inetrg/IFIP-Networking-LoRa-ICN-2022, and the whole system is currently being implemented for the RIOT Operating System.

References

Written by dkutscher

May 17th, 2022 at 3:01 pm

Posted in Publications

Tagged with , ,

MAVERIC: In-Network Computing for 5G/6G Campus Networks

without comments

Together with our partners Xantaro, Naval Vessels Lürssen, and the University of Applied Sciences Augsburg, we have started a new project on In-Network Computing for 5G/6G campus networks. The MAVERIC project will develop a mobile 5G campus network system with a special focus on automated deployment, monitoring as well as flexible and digitally sovereign in-network computing. The main use cases within the project are processes and tasks on ship yards. This environment is particularly harsh and has very high requirements regarding availability, security and confidentiality.

The MAVERIC project is sponsored by the German Federal Ministry for Economic Affairs and Climate Action (BMWK).

Written by dkutscher

April 12th, 2022 at 5:48 pm

Posted in Projects

Tagged with , , ,

Information-Centric Networking Research Group at IETF-113 Summary

without comments

The Information-Centric Networking Research Group (ICNRG) of the Internet Research Task Force (IRTF) met during the 113th meeting of the Internet Engineering Task Force (IETF) that took place in Vienna from March 19th to March 25th 2022. IETF-113 was the IETF's first hybrid meeting with onsite and remote participants.

Presentation material and minutes are available online, and there is a full recording on youTube. I am summarizing the meeting below.

Edmund Yeh: NDN for Data-Intensive Science Experiments

Edmund Yeh (Northeastern University) presented the NSF-funded project NDN for Data-Intensive Science Experiments (N-DISE), a two-year inter-disciplinary project with participants from Northeastern, Caltech, UCLA, and Tennessee Tech that collaborates with the Large Hadron Collider (LHC), genomics researchers, and the NDN project team.

N-DISE is building data-centric ecosystem to provide agile, integrated, interoperable, scalable, robust and trustworthy solutions for heterogeneous data-intensive domains, in order to support very data-intensive science applications through an NDN-based communication and data sharing infrastructure. The LHC high energy physics program represents the leading target use case, but the project is also looking at BioGenome and other human genome projects as future use cases.

In many data-intensive science applications, data needs to distributed in real-time, archived, retrieved by multiple consumers etc. Within one data centers, but even more so in geographically distributed scenarios, this could lead to a signficant amount of duplicated transmissions with legacy system architectures. N-DISE would leverage general ICN features and concepts such as location-independent data naming, on-path caching and explicit replication through data repos to dramatically improve the efficiency but also to reduce the complexity of such data management systems and their applications.

The general approach of the N-DISE project is to leverage recent results in high-speed NDN networking such as ndn-dpdk to build a data science support infrastructure for petascale distribution, which involves research in high-througput forwarding/caching, the definition of container-based node architectures, FPGA acceleration subsystems and SDN control. The goal is to deliver LHC data over wide area networks at throughputs of approximately 100 Gpbs and to dramatically decrease download times by using optimized caching.

From an NDN perspective, the project provides several interesting lines of work:

  • Deployment architectures (how to build efficient container-based N-DISE nodes);
  • WAN Testbed creation and throughput testing;
  • Optimized caching and forwarding;
  • Congestion control and multi-path forwardind; and
  • FPGA acceleration.

There are several interesting ideas and connections to ongoing ICN research in N-DISE. For example, as people start building applications for high-speed data sharing but also distributed computing, the question of container-based ICN node architectures arise, i.e., how to enable easy cloud-native deployment of such systems without compromising too much on performance.

Another interesting aspect is congestion control in multi-path forwarding scenarios. Existing technologies such as Multipath TCP and Multipath QUIC are somewhat limited with respect to their ability to use multipath resources in the network efficiently. In ICN, with its different forwarding model multipath forwarding decisions could be made hop-by-hop, and consumers (receiving endpoints) could be given greater control over path selection. For example:

Cenk Gündoğan: Alternative Delta Time Encoding for CCNx Using Compact Floating-Point Arithmetic

Cenk Gündoğan of HAW Hamburg presented an update of draft-gundogan-icnrg-ccnx-timetlv, a proposal for an alternative logarithmic encoding of time values in ICN (CCNx) messages.

The motivation for this work lies in constrained networking where header compression as per RFC 9139 (ICNLoWPAN) would be applied and more compact time encoding would be desirable. The proposed approach would allow for a compact encoding with dynamic ranges (as in floating point arithmetics), but imposes challenges with respect to backwards compatibility.

ICNRG is considering adopting this work as a research group item to find the best way for updating the current CCNx specifications in the light of these questions.

Dave Oran: Ping & Traceroute Update

Dave Oran presented the recent updates to two specifications:

In IP, fundamental and very useful tools such as ping and traceroute were created years after the architecture and protocol definitions. In ICN there is an opportunity to leverage tooling at an earlier phase – but also to reason about needed tools and useful features.

ICN Ping provides the ability to ascertain reachability of names, which includes

  • to test the reachability and operational state of an ICN forwarder;
  • to test the reachability of a producer or a data repository;
  • to test whether a specific named object is cached in some on-path CS, and, if so, return the administrative name of the corresponding forwarder; and
    • to perform some simple network performance measurements.

ICN Traceroute provides ability to ascertain characteristics (transit forwarders
and delays) of at least one of the available routes to a name prefix, which includes

  • to trace one or more paths towards an ICN forwarder (for troubleshooting purposes);
  • to trace one or more paths along which a named data of an application can be reached;
  • to test whether a specific named object is cached in some on-path CS, and, if so, trace the path towards it and return the identity of the corresponding forwarder; and
  • to perform transit delay network measurements.

Both drafts completed Research Group Last Call in January 2022 and evoked some feedback that has now been addressed (see presentation for details). ICNRG will transfer these drafts to IRSG review and subsequent steps in the IRTF review and publication process soon.

Dave Oran: Path Steering Refresher

Dave Oran presented a refresher of a previously presented specification of Path Steering in ICN (draft-oran-icnrg-pathsteering). Path Steering is a mechanism to discover paths to the producers of ICN content objects and steer subsequent Interest messages along a previously discovered path. It has various uses, including the operation of state-of-the-art multipath congestion control algorithms and for network measurement and management.

In ICN, communication is inherently multi-path and potentially multidestination. But so far there is no mechanism for consumers to direct Interest traffic onto a
specific path, which could lead to
– Forwarding Strategies in ICN forwarders can spray Interests onto various paths;
– Consumers have a hard time interpreting failures and performance glitches;
– Troubleshooting and performance tools need path visibility and control to find problems and do simple measurements.

ICN Path Steering would enable

  • Discovering, monitor and troubleshoot multipath network connectivity based on names and name prefixes:
    • Ping
    • Traceroute
  • Accurately measure a performance of a specific network path.
  • Multipath Congestion control needs to:
    • Estimate/Count number of available paths
    • Reliably identify a path
    • Allocate traffic to each path
  • Traffic Engineering and SDN
    • Externally programmable end-to-end paths for Data Center and
      Service Provider networks.

Briefly, Path Steering works by using a Path Label (as an extension to existing protocol formats, see figure) for discovering and for specifying selected paths.

The technology would give consumers much more visibility and greater control of multipath usage and could be useful for many applications, especially those that want to leverage path diversity, for example high-volume file transfers, robust communication in dynamically changing networks, and distributed computing.

Dirk Kutscher: Reflexive Forwarding Re-Design

Dave Oran and I recently re-design a scheme that we called Reflexive Forwarding and that is specified in draft-oran-icnrg-reflexive-forwarding.

Current Information-Centric Networking protocols such as CCNx and NDN have a wide range of useful applications in content retrieval and other scenarios that depend only on a robust two-way exchange in the form of a request and response (represented by an Interest-Data exchange in the case of the two protocols noted above).

A number of important applications however, require placing large amounts of data in the Interest message, and/or more than one two-way handshake. While these can be accomplished using independent Interest-Data exchanges by reversing the roles of consumer and producer, such approaches can be both clumsy for applications and problematic from a state management, congestion control, or security standpoint.

This specification proposes a Reflexive Forwarding extension to the CCNx and NDN protocol architectures that eliminates the problems inherent in using independent Interest-Data exchanges for such applications. It updates RFC8569 and RFC8609.

Example: RESTful communication over ICN

In today HTTP deployments, requests such as HTTP GET requests are conceptionally stateless, but in fact they carry a lot of information that would allow server to process these requests correctly. This includes regular header fields, cookies but also input parameters (form data etc.) so that requests can become very large (sometimes larger than the corresponding result messages).

It is generally not a good idea to build client-server systems that require servers to parse and process a lot a client-supplied input data, as this could easily be exploited by computational overload attacks.

In ICN, in addition, Interest message should not be used to carry a lot of "client" parameters as this could lead to issues with respect to flow balance (congestion control schemes in ICN should work based on DATA message volume and rate), but would also force forwarders to store large Interest messages and could potentially even lead to Interest fragmentation, a highly undesirable consequence.

Reflexive Forwarding aims at providing a robust ICN-idiomatic way to transfer "input parameters", by enabling the "server side" to fetch parameters using regular ICN communication (Interest/Data). When doing so, we do not want to give up important ICN properties such as not requiring consumers (i.e., the "clients") to reveal their source address – a useful feature for enable easy consumer mobility and some form of privacy.

Reflexive Forwarding Design

Our Reflexive Forwarding scheme addresses this by letting the consumer specify a tempory, non-globally-routable prefix to the network and the producer that would allow the producer to get back to the consumer through Reflexive Interests for fetching the required input parameters at the producer's discretion. The figure above depicts the high-level protocol operation.

Our new design leverage tempory PIT (Pending Interest Table) state in forwarders and PIT Tokens (hop-by-hop protocol fields in NDN and CCNx) that would allow forwaders, to map Reflexive Interests to PIT entries of the actual Interest and thus forward the Reflexive Interest correctly, on the reverse path.

Potential Applications

Potential applications include

  • RESTful communication, e.g., Web over ICN;
  • Remote Method Invocation;
  • Phone-home scenarios; and
  • Peer state synchronization.

For example, we have used a previous design of this scheme in our paper RICE: Remote Method Invocation in ICN that leveraged Reflexive Forwarding for the invocation and input parameter transmission as depicted in the figure above.

Reflexive Forwarding requires relativly benign to ICN forwarder and endpoint behavior but could enable many relevant use cases in an ICN idiomatic way, without requiring large layering overhead and without giving important ICN properties.

Written by dkutscher

April 1st, 2022 at 2:36 pm

Posted in IRTF

Tagged with , , , ,

Hedge 120: Information Centric Networking

without comments

I was on The Hedge Podcast with Russ White and Alvaro Retana to discuss Information-Centric Networking and the future of the Internet.

Written by dkutscher

March 10th, 2022 at 9:41 am

Posted in Publications

Connecting the Metaverse: In-Network Computing as Infrastructure

without comments

Ubiquitous virtual reality environments such as Metaverse have been described as the future mobile Internet, alluding to their expected profound impact on the way how information is retrieved, processed, rendered, and consumed. While detailed designs are still emerging, early visions such Keeichi Matsuda’s Hyper-Reality project have already outlined usage models and expectations on connectivity and data availability to enable rich interactions with the physical world and blending it with dynamically computed artefacts.

Metaverse systems will challenge traditional client-server-inspired web models, centralized security trust anchors and server-style distributed computing. The new network will be based on dynamic interactions between humans, the phyiscal world, and computing processes in an edge-to-cloud continuum. This talk will outline the associated challenges, review recent work in distributed computing and suggest some approaches for evolving networking and computing to enable Metaverse – not as a dystopian vision but as an opportunity for societies and their citizens.

Download presentation

Written by dkutscher

March 8th, 2022 at 5:46 pm

Posted in Publications,Talks

Information-Centric Networking Research Group Update December 2021

without comments

The Information-Centric Networking Research Group (ICNRG) of the Internet Research Task Force (IRTF) has recently published two RFC and held a research meeting on December 10th 2021.

Recent RFC Publications

ICNRG published two RFCs recently:

RFC 9139: ICN Adaptation to Low-Power Wireless Personal Area Networks (LoWPANs)

RFC 9139 defines a convergence layer for Content-Centric Networking (CCNx) and Named Data Networking (NDN) over IEEE 802.15.4 Low-Power Wireless Personal Area Networks (LoWPANs). A new frame format is specified to adapt CCNx and NDN packets to the small MTU size of IEEE 802.15.4. For that, syntactic and semantic changes to the TLV-based header formats are described.

To support compatibility with other LoWPAN technologies that may coexist on a wireless medium, the dispatching scheme provided by IPv6 over LoWPAN (6LoWPAN) is extended to include new dispatch types for CCNx and NDN. Additionally, the fragmentation component of the 6LoWPAN dispatching framework is applied to Information-Centric Network (ICN) chunks.

In its second part, the document defines stateless and stateful compression schemes to improve efficiency on constrained links. Stateless compression reduces TLV expressions to static header fields for common use cases. Stateful compression schemes elide states local to the LoWPAN and replace names in Data packets by short local identifiers.

The ICN LoWPAN specification is a great platform for future experiments with ICN in constrained networking environments, including but not limited to LoWPAN networks.

RFC 9138: Design Considerations for Name Resolution Service in Information-Centric Networking (ICN)

RFC 9138 provides the functionalities and design considerations for a Name Resolution Service (NRS) in Information-Centric Networking (ICN). The purpose of an NRS in ICN is to translate an object name into some other information such as a locator, another name, etc. in order to forward the object request.

Since naming data independently from its current location (where it is stored) is a primary concept of ICN, how to find any NDO using a location-independent name is one of the most important design challenges in ICN. Such ICN routing may comprise three steps:

  1. Name resolution: matches/translates a content name to the locator of the content producer or source that can provide the content.
  2. Content request routing: routes the content request towards the content's location based either on its name or locator.
  3. Content delivery: transfers the content to the requester.

Among the three steps of ICN routing, this document investigates only the name resolution step, which translates a content name to the content locator. In addition, this document covers various possible types of name resolution in ICN such as one name to another name, name to locator, name to manifest, name to metadata, etc.

ICNRG Meeting on December 10th 2021

Agenda

1 Chairs’ Presentation: Status, Updates Chairs 05 min
2 Zenoh - The Edge Data Fabric Carlos Guimarães 30 min
3 The SPAN Network Architecture Rhett Sampson 30 min
4 NDNts API Design Junxiao Shi 30 min
6 Wrap-Up, Next Steps Chairs 5 min

Zenoh

Carlos Guimarães presented zenoh – The Edge Data Fabric. zenoh is an ICN-inspired data distribution and processing system that zenoh aims at unifying data in motion, data at rest and computations. It blends traditional pub/sub with geo distributed storage, queries and computations, adopting a hierarchical naming scheme and other ICN properties. zenoh provides a high level API for high performance pub/sub and distributed queries, data representation transcoding, an implementation of geo-distributed storage and distributed computed values.


SPAN Network Architecture

Rhett Sampson and Jaime Llorca presented GT Systems' SPAN-AI content distribution system (CDN as a service) that uses ICN/CCN/NDN for the implementation of their distributed content delivery system, leveraging name-based routing.


NDNts API Design

Junxiao Shi presented the NDNts API Design. NDNts is an NDN implementation in TypeScript, aiming to facilitate NDN application development in browsers and on the Node.js platform.

The development of NDNts led to some insights on NDN low-level API design (packet decoding, fragmentation, notion of "faces", retransmission logic etc.) that Junxiao shared in his presentation.

Written by dkutscher

December 21st, 2021 at 10:07 pm

Posted in IRTF

Tagged with , ,

Dagstuhl Seminar on Compute-First Networking

without comments

Eve Schooler, Jon Crowcroft, Phil Eardley, and myself organized an online Dagstuhl seminar on Compute-First Networking earlier in June that was attended by an excellent group of researchers from distributed computing, networking and data analytics communities.

Dagstuhl has now published the seminar report that discusses new perspectives on doing Computing in the Networking, use cases and that includes many references to relevant literature and on-going projects in the field.

Executive Summary

Edge- and more generally In-Network Computing are key elements in many traditional content distribution services today, typically connecting cloud-based computing to consumers. The advent of new programmable hardware platforms, research and wide deployment of distributed computing technologies for data processing, as well as new exciting use cases such as distributed Machine Learning and Metaverse-style ubiquitous computing are now inspiring research of more fine-granular and more principled approaches to distributed computing in the "Edge-To-Cloud Continuum".

The Compute-First Networking Dagstuhl seminar has brought together researchers and practitioners in the fields of distributed computing, network programmability, Internet of Things, and data analytics to explore the potential, possible technological components, as well as open research questions in an exciting new field that will likely induce a paradigm shift for networking and its relationship with computing.

Traditional overlay-based in-network computing is typically limited to quite specific purposes, for example CDN-style edge computing. At the same time, network programmability approaches such as Software-Defined Networking and corresponding languages such as P4 are often perceived as too limited for application-level programming. Compute-First Networking (CFN) views networking and computing holistically and aims at leveraging network programmability, server- and serverless in-network computing and modern distributed computing abstraction to develop a new system's approach for an environment where computing is not merely and add-on to existing networks, but where networking is re-imagined with a broader and ubiquitous notion of programmability.

We expect this approach to enable several benefits: it can help to unlock distributed computing from the existing silos of individual cloud and CDN platforms – a necessary condition to enable Keiichi Matsuda's vision of Hyper-Reality and Metaverse concepts where the physical world, human users and different forms of analytics, and visual rendering services constantly engage in information exchanges, directly at the edges of the network. It can also help to provide reliable, scalable, privacy-preserving and universally available platforms for Distributed Machine Learning applications that will play a key role in future large-scale data collection and analytics.

CFN's integrated approach allows for several optimizations, for example a more informed and more adaptive resource optimization that can take into account dynamically changing network conditions, availability of utilization of compute platforms as well as application requirements and adaptation boundaries, thus enabling more
responsive and better-performing applications.

Several interesting research challenges have been identified that should be addressed in order to realize the CFN vision: How should the different levels of programmability in todays system be integrated into a consistent approach? How would programming and communication abstractions look like? How do orchestration systems need to evolve in order to be usable in these potentially large scale scenarios? How can be guarantee security and privacy properties of a distributed computing slice without having to rely on just location attributes? How would the special requirements and properties of relevant applications such as Distributed Machine best be mapped to CFN – or should distributed data processing for federated or split Machine Learning play a more prominent role in designing CFN abstractions?

This seminar was an important first step in identifying the potential and a first set of interesting new research challenges for re-imaging distributed computing through CFN – an exciting new topic for networking and distributed computing research.

Written by dkutscher

December 1st, 2021 at 4:18 pm

Posted in Events,Posts

Tagged with ,

Addressing in the Internet

without comments

There was a side meeting on Internet Addressing at IETF-112 this week, discussing potential gaps in Internet Addressing and potential use cases that would suggest new addressing structures.

Looking at the realities in the Internet today, I do not think that actual relevant use cases and current issues in the Internet are served well by just a new addressing approach for the Internet Protocol. Instead I believe that there needs to be architectural discussion first – and addressing might eventually fall out as a result.

My slides for the panel discussion.

Written by dkutscher

November 11th, 2021 at 2:22 pm

Posted in IETF,Posts

Tagged with ,

Information-Centric Dataflow: Re-Imagining Reactive Distributed Computing

without comments

The Dataflow paradigm is a popular distributed computing abstraction that is leveraged by several popular data processing frameworks such as Apache Flink and Google Dataflow. Fundamentally, Dataflow is based on the concept of asynchronous messaging between computing nodes, where data controls program execution, i.e., computations are triggered by incoming data and associated conditions. This typically leads to very modular system architectures that enable re-use, re-composition, and parallel execution naturally. Most of the popular distributed processing frameworks today are implemented as overlays, i.e., they allow for instantiating computations and for inter-connecting them, for example by creating and maintaining communication channels between nodes such as system processes and microservices.

Connections and Overlays

The connection-based approach incurs several architectural problems and inefficiencies, for example: application logic is concerned with receiving and producing data as a result of computation processes but connections imply transport endpoint addresses that are typically not congruent. This typically implies a mapping or orchestration system. One key goal for Dataflow systems is to enable parallel execution, i.e., one computation is run in parallel, which also affects the communication relationships with upstream producers and downstream consumers. For example, when parallelizing a computation step, it typically implies that each instance is consuming a partition of the inputs instead of all the inputs. An indirection- and connection-based approach makes it harder to configure (and especially to dynamically re-configure) such dataflow graphs.

In some variants of Dataflow, for example stream processing, it can be attractive if one computation output can be consumed by multiple downstream functions. Connection-based overlays typically require duplicating the data for each such connection, incurring significant overheads. In large-scale scenarios, the computation functions may be distributed to multiple hosts that are inter-connected in a network. Orchestrators may have visibility into compute resource availability but typically have to treat the TCP/IP network as a blackbox. As a result, the actual data flow is locked into a set of overlay connections that do not necessarily follow optimal paths, i.e., the communication flows are incongruent with the logical data flows.

IceFlow: Information-Centric Dataflow

In our ACM ICN 2021 paper Vision: Information-Centric Dataflow – Re-Imagining Reactive Distributed Computing, we present IceFlow – an Information-Centric Dataflow system approach that supports traditional Dataflow with Information-Centric principles and that can be used as a drop-in replacement for existing Dataflow-based frameworks.

In addition to the paper, we also show a live of a joint optimization of computing and networking resources in IceFlow: Decentralized ICN-based dataflow system implementation.

IceFlow’s objectives are:

  1. reducing complexity in Dataflow systems by removing connection-based overlays and corresponding orchestration requirements;
  2. enabling efficient communication by reducing data duplication; and
  3. enabling additional improvements through more direct communication and caching in the network.

IceFlow is employing access to authenticated data in the network as per CCNx/NDN-based ICN for the communication between computation functions and provides additional features such as flowcontrol, partitions for data streaming, and a window concept for synchronizing computations in streaming pipelines. The contributions of this paper are:

  1. an ICN naming scheme for Dataflow;
  2. a concept for receiver-driven flow control in IceFlow-based Dataflow systems and for dealing with parallel processing in IceFlowbased Dataflow systems; and
  3. a prototype implementation.

Links

Written by dkutscher

September 21st, 2021 at 3:11 pm

Posted in Publications

Tagged with , ,

Zensur im Internet

without comments

In der neuen Folge unseres Podcasts Neulich im Netz widmen wir uns eines etwas delikateren Themas: Zensur im Internet

Insbesondere geht es um die "Great Firewall of China" (GFW), die wir in Bezug auf ihre technische Umsetzung und Probleme analysiert haben.

Anhand von Publikationen und eigenen Erfahrungen analyisieren wir, wie die GFW grob funtioniert, kontinuiierlich weiterentwickelt wird, und wie effektiv unterschiedliche Werkzeuge wie VPNs, shadowsocks usw. sind.

Diese und weitere Aspekte von Zensur im Internet in der dritten Episode von Neulich im Netz.

Written by dkutscher

June 23rd, 2021 at 9:56 am