Trochilus accepted at USENIX ATC
Our paper on Trochilus, titled Learning-Enhanced High-Throughput Pattern Matching Based on Programmable Data Plane has been accepted at USENIX ATC-2025. This is joint work with Qing LI's group at Peng Cheng Lab, and the first author is Guanglin DUAN.
Abstract:
Pattern matching is critical in various network security applications. However, existing pattern matching solutions struggle to maintain high throughput and low cost in the face of growing network traffic and increasingly complex patterns. Besides, managing and updating these systems is labor intensive, requiring expert intervention to adapt to new patterns and threats. In this paper, we propose Trochilus, a novel framework that enables high-throughput and accurate pattern matching directly on programmable data planes, making it highly relevant to modern large-scale network systems. Trochilus innovated by combining the learning ability of model inference with the high-throughput and cost-effective advantages of data plane processing. It leverages a byte-level recurrent neural network (BRNN) to model complex patterns, preserving expert knowledge while enabling automated updates for sustained accuracy. To address the challenge of limited labeled data, Trochilus proposes a semi-supervised knowledge distillation (SSKD) mechanism, converting the BRNN into a lightweight, data-plane-friendly soft multi-view forest (SMF), which can be efficiently deployed as match-action tables. Trochilus minimizes the need for expensive TCAM through a novel entry cluster algorithm, making it scalable to large network environments. Our evaluations show that Trochilus achieves multi-Tbps throughput, supports various pattern sets, and maintains high accuracy through automatic updates.
References
- Guanglin Duan, Yucheng Huang, Zhengxin Zhang, Qing Li, Dan Zhao, Zili Meng, Dirk Kutscher, Ruoyu Li, Yong Jiang, and Mingwei Xu. Learning-Enhanced High-Throughput Pattern Matching Based on Programmable Data Plane. Usenix ATC 2025. accepted for publication
- Extended Summary by Peng Cheng Lab