Dirk Kutscher

Personal web page

Archive for the ‘ACM’ tag

ACM ICN-2022 Highlights

without comments

The ACM Information-Centric Networking 2022 Conference took place in Osaka from September 19 to 21 2022, hosted by Osaka University. It was a three-day conference with tutorials, one keynote, two panel session, and paper and poster/demo presentations. The highlights (with links to papers and presentations) from my perspective were the following:

Keynote by Dave Oran: Travels with ICN – The road traversed and the road ahead

Dave Oran presented an overview of his research experience over the last ten years that was informed by many seminal research contributions on ICN and his career in the network vendor sector as well as in standards and research bodies such as the IETF and IRTF.

The keynote's theme was about disentagling the application and network layer aspects of ICN, which led to interesting perspectives on some of the previous design decisions in CCNx and NDN.

As ilustrated in the figure below, the more networking-minded ICN topics are typically connected to features and challenges of building packet-forwarding networks based on the principle of accessing named data. The actual research questions are generally not different to those of IP networks (routing, mobility etc.), but ICN provides a significant potential to re-think and often improve over the specific approaches in IP networks due to its core properties such as object security and symmetric, stateful forwarding.

Information-centric applications development in contrast is often concerned with general naming concepts, namespace design, and security features that are enabled by namespace design and application layer object security such as trust schema and provenance.

The message in Dave's talk was not that these are completely disjunct areas that should best be investigated independent of each other, but rather that the ICN's fascination and disruptive potential is based on the potential for rethinking layer boundaries and contemplating a better function split between applications, network stacks on endpoints, and forwarding elements in the network. In his talk, Dave focused on

  • the Interaction of consumers & networking producers of data;
  • routing;
  • forwarding; and
  • congestion control.

He discussed many lessons learned as well as open research and new ideas for all of these topics – please refer to the presentation slides for details.

One particularly interesting current ICN research topic is distributed computing and ICN architectures & interaction models for that. ICN's name-based forwarding model and object security provide very interesting options for simplifying systems such as microservices, RESTful services and distributed application coordination. Alluding to our work on Reflexive Forwarding, Dave offered two main lessons learned from building corresponding communication abstractions:

  1. Content fetch with two-way handshakes is a poor match for doing distributed computations.

  2. Extensions to the base protocols can give a flexible underpinning for multiple interaction models

This raises the question of the slim waist of ICN, i.e., as research progresses, what should be the minimal feature set and what is the right extensibility model?

Dave concluded his talk with a few interesting questions:

  • how can the networking insights we’ve gained from ICN protocols inform the construction of Information Centric systems and applications?

    • Whether and how to utilize name-based routing to achieve robustness and performance scaling for distributed applications?
    • Where does caching help or not help and how to best utilize caches?
    • Does pushing Names down to lower layers help latency? Resilience? Fairness?
  • How can the insights we’ve gained from applying Information Centricity in applications inform what we bother to change the network to do, and what not?

    • Do things like multipath forwarding, in-network retransmission, or reflexive forwarding actually enable applications that are hard or infeasible to do without them?
    • Is there a big win for wireless networks in terms of optimizing a scarce resource or having more robust and responsive mobility characteristics?

More details in the presentation slides

Panel: ICN and the Metaverse – Challenges and Opportunities

I had the pleasure of being in a panel with Jeff Burke (UCLA) and Geoff Houston (APNIC), moderated by Alexander Afanasyev (Florida International University) discussing Metaverse challenges and opportunities for ICN.

Questions on Metaverse and ICN

Large-scale interactive and networked AR/VR/XR systems are now referred to as Metaverse, and the general assumption is that corresponding applications will be hosted on platforms, similar to those that are employed for web and social media applications today.

In the web, the platform approach has led to an accelerated development and growth of a few popular mainstream systems. On the other hand, several problems have been observed such as ubiquitous surveillance, lock-in effects, centralization, innovation stagnation, and cost overhead for achieving the required performance.

While these phenomena may have both technical and economic root causes, we would like to discuss:

  • How should Metaverse systems be designed, and what would be important architectural pillars?
  • What is the potential for re-imagining Metaverse with information-centric concepts and protocols?
  • Would ICN enable or lead to profound architecturally unique approaches – or would protocols such as NDN be a drop-in replacement for QUIC, HTTP3 etc.?
  • What are the challenges for building ICN-based Metaverse systems, and what it missing in today's ICN platforms?

As input to the discussion, Jeff Burke and myself (together with Dave Oran) submitted two papers:

Research Directions

Jeff offered a list of really interesting research directions based on the notion that in the Metaverse, host-based identifiers and end-to-end connections between hosts would be abstracted even further away than in today’s web. Client devices would fade into the background in favor of the data supplanting or augmenting the real world. Thus, a metaverse consisted of information not associated with the physical world unless it needed to describe or provide interaction with it. The experiential semantics were viscerally information-centric, which would help to motivate the ICN research opportunities such as:

  • Persistence: The information forming a metaverse persists across sessions and users.

  • “Content” and Interoperability: Designing the relationships among metaverse-layer objects and the named packets that an ICN network moves and stores.

  • Naming and Spatial Organization: How to best integrate knowledge from research in databases and related fields where these challenges have been considered for decades.

  • Trust, Provenance, and Transactions: Using ICN to disentangle metaverse objects from the security provided by a source or a given channel of communication, with the named data representation secured at the time of publication instead.

RESTful ICN

In our paper on RESTFul ICN, Dave Oran and I asked the question: given that most web applications are concerned with transferring named units of data (web resources, video chunks etc.), can the REST paradigm be married with the data-oriented, receiver-driven operation of Information-Centric Networking (ICN), leveraging attractive ICN benefits such as consumer anonymity, stateful and symmetric forwarding, flow-balance in-network caching, and implicit object security?

We argue that this is feasible given some of the recent advances in ICN protocol development and that the resulting suite is simpler and potentially having better performance and robustness properties. Our sketch of an ICN based protocol framework addresses secure and efficient establishment and continuation of REST communication sessions, without giving up key ICN properties, such as consumer anonymity and flow balance.

Panel Discussion

The panel discussed the current socio-economic realities in the Internet and the Web and explored opportunities (and non-opportunities) for redesigns, and how ICN could be a potential enabler for that.

My personal view is that most of the potential dystopian outcomes of future Metaverse applications are independent from the enabling networking technology and the technology stack at large (security, naming etc.). It is really important to understand the actual objectives of a specific systems, i.e., who operates to which ends, similar to so-called social networks today. If the main objective is to create a more powerful advertising and manipulation platform, then such as system will exhibit yet unimaginable surveillance and tracking mechanisms – independent of the underlying network stack.

With respect to the technical design, I agree to Jeff Burke's proposed research directions. One particularly interesting question will be how to design a Information-Centric communication stack and corresponding APIs. I argued that it is not necessary to replicate existing interaction styles and protocol stacks from the TCP/IP (or QUIC) world. Instead it should be more interesting and productive to discuss the fundamentally needed interaction classes such as

  • High-performance multi-destination transfer
  • Group communication and synchronization
  • High-performance session-oriented communication with servers and peers (for which we proposed RESTful ICN).

The panel then also discussed how likely non-mainstream Metaverse systems would be adopted and whether the current socio-economic environment actually allows for that level of permissionless innovation – considering the network effects that Metaverse systems would be subjected to, much in the same way as so-called social networks.

Panel: Hard Lessons for ICN from IP Multicast?

Thomas Schmidt (HAW Hamburg) moderated a panel discussion with Jon Crowcroft (University of Cambridge), Dave Oran, and George Xylomenos (Athens University of Economics and Business) as panelists.

With the continued shift towards more and more live video streaming services over the Internet, scalable multi-destination delivery has become more relevant again. For example, the recently chartered IETF Working Group on Media over QUIC (MOQ), is addressing the need for scalable multi-destination delivery and the unavailability of IP multicast as a platform by developing a QUIC-based overlay system that essentially uses information-centric concepts, albeit in a QUIC overlay network. Such system would consist of a network of QUIC proxies, connected via individual QUIC connections to emulate request forwarding and chunk-based video data distribution. Considering the non-negligible overhead and complexity one might ask the question whether live video streaming over the Internet could be served by a better approach. Questions like this are being asked by the network service provider community (ISPs have to bear a lot of the overhead and overlay complexity) as well, for example in this APNIC blog posting by Jake Holland titled Why inter-domain multicast now makes sense.

This panel was inspired by a statement paper submitted by Jon Crowcroft titled [Hard lessons for ICN from IP multicast (https://dl.acm.org/doi/10.1145/3517212.3558086). In this brief statement, Jon traced the line of thought from Internet multicast through to Information Centric Networking, and used this to outline what he thinks should have been the priorities in ICN work from the start.

The statement paper discusses a few problems with IP multicast that have been largely acknowledged such as difficulties in creating viable business models, unsolved security problems such as IP multicast being used as a DDOS platform, and interdomain multicast that proven difficult to establish due multicast routing scaling problems and the lack of robust pricing models. The second part of the paper is then some ICN work that has been addressing some of the mentioned issued.

The paper gave rise to an interesting and controversial discussion at the panel. The most important point is IMO to characterize ICN communication model correctly: it is correct that the combination of stateful forwarding, Interest aggregation, and caching enables an implicit multi-destination delivery service. It is implicit, because consumers that ask for the same units of named data within a time frame at the order of the network RTT will send equivalent Interest messages so that forwarders can multicast the data delivery to the faces they received such Interests from. In conjunction with opportunistic (or managed) caching by forwarders this would enable a very elegant multi-destination delivery services that can even cater to a wider variation of Interest sending times, as "late" Interest would be answered from caches.

This is a different service model compared to the push-based IP multicast model. ICN does not provide such as service in the first place, but is just applying its regular receiver-driven mode of operation which elegantly works well in the case of multiple consumers asking for the same data. It is probably fair to say that the ICN model caters to media-delivery use cases (one stream delivered to multiple consumers) but does not try to provide the more general IP multicast service model (Any Source Multicast). However, by extension, the ICN approach could be applied to multi-source scenarios as well – the system would build implicit delivery trees from any source to current consumers, without requiring extra machinery.

With this, if you like, simpler service model, ICN does fundamentally not inherit many of the problems that prohibit IP multicast in the Internet: the system is receiver-driven which simply eliminates DDOS threats (on the packet level). It is also not clear, whether ICN would need anything special to provide this service in inter-domain settings (except for general ICN routing in the Internet, which is a general,
but different research question).

Acknowledging this conceptual and practical difference, there are obviously other interesting research questions that ICN multi-destination delivery entails, for example performance and jitter reduction in the presence of caching and other transport questions.

Overall, a good time to talk about multi-destination delivery and to keep thinking about missing pieces and potential future work in ICN.

Enabling Distributed Applications

One paper presentation session was focused on distributed applications – a very interesting and relevant ICN research area. It featured three great papers:

SoK: The evolution of distributed dataset synchronization solutions in NDN

This paper by Philipp Moll, Varun Patil, Lan Wang, and Lixia Zhang systemizes the knowledge about distributed dataset synchronisation in ICN, or Sync in short, which, according to the authors, plays the role of a transport service in the Named Data Networking (NDN) architecture. A number of NDN Sync protocols have been developed over the last decade. For this paper, they conducted a systematic examination of NDN Sync protocol designs, identified common design patterns, revealed insights behind different design approaches,
and collected lessons learned over the years.

Sync enables new ways of thinking about coordination and general communication in distributed ICN systems, and I encourage everyone to read this for a good overview of the different proposed systems and their properties.

There are also some open research questions around Sync, such as large-scale applicability, alternative to using Interest multicast for discovery and more – a good topic to work on!

DICer: distributed coordination for in-network computations

This paper by Uthra Ambalavanan, Dennis Grewe, Naresh Nayak, Liming Liu, Nitinder Mohan, and Jörg Ott is a nice product of the Piccolo project that had the pleasure to set up and co-lead.

Application domains such as automotive and the Internet of Things may benefit from in-network computing to reduce the distance data travels through the network and the response time. Information Centric Networking (ICN) based compute frameworks such as Named Function Networking (NFN) are promising options due to their location independence and loosely-coupled communication model.

However, unlike current operations, such solutions may benefit from orchestration across the compute nodes to use the available resources in the network better. In this paper, the authors adopted the State Vector Synchronization (SVS), an application dataset synchronization protocol in ICN, to enhance the neighborhood knowledge of in-network compute nodes in a distributed fashion. They designed distributed coordination for in-network computation (DICer) that assists the service deployments by improving the resolution of compute requests.

Kua: a distributed object store over named data networking

This paper by Varun Patil, Hemil Desai, and Lixia Zhang decribes a distributed object store in NDN.

Applications such as machine learning training systems or log collection generate and consume large amounts of data. Object storage systems provide a simple abstraction to store and access such large datasets. These datasets are typically larger than the capacities of individual storage servers, and require fault tolerance through replication. This paper presents Kua, a distributed object storage system built over Named Data Networking (NDN).

The data-centric nature of NDN helps Kua maintain a simple design while catering to requirements of storing large objects, providing fault tolerance, low latency and strong consistency guarantees, along with data-centric security.

ICN Applications and Wireless Networking

The session on ICN Applications and Wireless Networking features four papers:

N-DISE: NDN-based data distribution for large-scale data-intensive science

This paper by Yuanhao Wu, Faruk Volkan Mutlu, et al. describes an NDN for Data-Intensive Science Experiments (N-DISE).

To meet unprecedented challenges faced by the world’s largest data- and network-intensive science programs, the authors designed and implemented a new, highly efficient and field-tested data distribution, caching, access and analysis system for the Large Hadron Collider (LHC) high energy physics (HEP) network and other major science programs. They developed a hierarchical Named Data Networking (NDN) naming scheme for HEP data, implemented new consumer and producer applications to interface with the high-performance NDNDPDK forwarder, and buildt on recently developed high-throughput NDN caching and forwarding methods.

The experiemts in this paper include delivering LHC data over the wide area network (WAN) testbed at throughputs exceeding 31 Gbps between Caltech and StarLight, with dramatically reduced download time.

Building a secure mHealth data sharing infrastructure over NDN

In this paper Saurab Dulal, Nasir Ali, et al. describes an NDN-based mHealth system called mGuard.

Exploratory efforts in mobile health (mHealth) data collection and sharing have achieved promising results. However, fine-grained contextual access control and real-time data sharing are two of the remaining challenges in enabling temporally-precise mHealth intervention. The authors have developed an NDN based system called mGuard to address these challenges. mGuard provides a pub-sub API to let users subscribe to real-time mHealth data streams, and uses name-based access control policies and key-policy attribute-based encryption to grant fine-grained data access to authorized users based on contextual information.

Delay-tolerant ICN and its application to LoRa

I have co-authored this paper together with Peter Kietzmann, José Alamos, Thomas C. Schmidt, and Matthias Wählisch.

Connecting low-power long-range wireless networks, such as LoRa, to the Internet imposes significant challenges because of the vastly longer round-trip-times (RTTs) in these constrained networks. In our paper on "Delay-Tolerant ICN and Its Application to LoRa" we present an Information-Centric Networking (ICN) protocol framework that enables robust and efficient delay-tolerant communication to edge networks, including but not limited to LoRa. Our approach provides ICN-idiomatic communication between networks with vastly different RTTs for different use cases. We applied this framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-Internet and asynchronous ("push") data production in the LoRa edge. Instead of using LoRaWAN, we implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY layer and ICN protocol mechanisms in the RIOT operating system.

For our experiments, we connected constrained LoRa nodes and gateways on IoT hardware platforms to a regular, emulated ICN network and performed a series of measurements that demonstrate robustness and efficiency improvements compared to standard ICN.

iCast: dynamic information-centric cross-layer multicast for wireless edge network

This paper by Tianlong Li, Tian Song, Yating Yang, and Jike Yang presents iCast, short for dynamic information-centric multicast, to enable dynamic multicast in the link layer.

Native multicast support in Named Data Networking (NDN)
is an attractive feature, as multicast content delivery can reduce the redundant traffic and improve the network performance, especially in wireless edge networks. With their visibility into Interest and Data names, NDN routers automatically aggregate the same requests from different end hosts and establish network-layer multicast. However,
the current link-layer multicast based on host-centric MAC address management is inflexible. Consequently, supporting NDN dynamic multicast with the current link-layer architecture remains a challenge.

iCast enables dynamic multicast in the link layer based on three main contributions:

  1. iCast integrates NDN native multicast with the host-centric link layer while maintaining the host-centric properties of the current link layer.
  2. iCast achieves per-packet dynamic multicast in the link layer, and the authors further propose a hash-based iCast variant for dynamic connection.
  3. iCast has been implemented in a real testbed, and the evaluation results show that iCast reduces up to 59.53% traffic compared with vanilla NDN. iCast bridges the gap between NDN multicast and the host-centric link-layer multicast.

Written by dkutscher

September 27th, 2022 at 3:29 pm

Posted in Events

Tagged with , ,

ACM ICN-2019 Highlights

without comments

ACM ICN-2019 took place in the week of September 23 in Macau, SAR China. The conference was co-located with Information-Centric-Networking-related side events: the TouchNDN Workshop on Creating Distributed Media Experiences with TouchDesigner and NDN before and an IRTF ICNRG meeting after the conference. In the following, I am providing a summary of some highlights of the whole week from my (naturally very subjective) perspective.

University of Macau -- the ICN-2019 Venue

Applications

ICN with its accessing named data in the network paradigm is supposed provide a different, hopefully better, service to application compared to the traditional stack of TCP/IP, DNS and application-layer protocols. Research in this space is often addressing one of two interesting research questions: 1) What is the potential for building or re-factoring applications that use ICN and what is the impact on existing designs; and 2) what requirements can be learned for the evolution of ICN, what services are useful on top of an ICN network layer, and/or how should the ICN network layer be improved.

Network Management

The best paper at the conference on Lessons Learned Building a Secure Network Measurement Framework using Basic NDN by Kathleen Nichols took the approach of investigating how a network measurement system can be implemented without inventing new features for the NDN network layer. Instead, Kathleen's work explored the features and usability support mechanisms that would be needed for implementing her Distributed Network Measurement Protocol (DNMP) in terms of frameworks and libraries leveraging existing NDN. DNMP is secure, role-based framework for requesting, carrying out, and collecting measurements in NDN forwarders. As such it represents a class of applications where applications both send and receive data that is organized by hierarchical topics in a namespace which implies a conceptual approach where applications do not (want to) talk to specific producers but are really operating in an information-centric style.

Communication in such a system involves one-to-many, many-to-one, and any-to-any communications about information (not data objects hosted at named nodes). DNMP employs a publish/subscribe model inspired by protocols such as MQTT where publishers and subscribers communicate through hierarchically structured topics. Instead of existing frameworks for data set reconciliation, with DNMP work includes the development of a lightweight pub/sub sync protocol called syncps that uses Difference Digests, solving the multi-party set reconciliation problem with prior context.

In a role-based system such as DNMP that uses secure Named-Data-based communication, automating authentication and access control is typically a major challenge. DNMP leverages earlier work on Trust Schema but extends this by a Versatile Security Toolkit (VerSec) that integrates with the transport framework to simplify integration of trust rules. VerSec is about to be released under GPL.

I found this paper really interesting to read because it is a nice illustration of what kind of higher layer services and APIs non-trivial application require. Also, the approach of using the NDN network layer as is but implementing additional functionality as libraries and frameworks seems promising with respect to establishing a stable network layer platform where innovation can happen independently on top. Moreover, the paper embraces Information-Centric thinking nicely and demonstrates the concept with a relevant application. Finally, I am looking forward to see the VerSec software which could make it easier for developers to implement rigorous security and validation in the applications.

Distributed Media Experiences

Jeff Burke and Peter Gusev organized the very cool TouchNDN workshop on Creating Distributed Media Experiences with TouchDesigner and NDN at the School of Creative Media at the City University of Hong Kong (summary presentation). The background is that video distribution/access has evolved significantly from linear TV broadcast to todays applications. Yet, many systems still seem to be built in a way that optimizes for linear video streaming to consumer eye balls, with a frame sequence abstraction.

Creative media applications such as Live Show Control (example) exhibit a much richer interaction with digital video, often combing 3D modelling with flexible, non-sequential access to video based on (for example) semantics, specific time intervals, quality layers, or spatial coordinates.

Touchdesigner used for sound reactive 3D object and for mixing a video loop

Combine this with dynamic lightning, sound control and instrumentation of theater effects, and you get an idea of an environment where various pieces of digital media are mixed together creatively and spontaneously. Incidentally, a famous venue for such an installation is the Spectacle at MGM Cotai, close to the venue of ACM ICN-2019 in Macau.

The Spectacle at MGM Cotai - Creative Overview

Derivative's TouchDesigner is a development platform for such realtime user experiences. It is frequently used for projection mapping, interactive visualization and other applications. The Center for Research in Engineering, Media and Performance (REMAP) has developed an integration of NDN with TouchDesigner's realtime 3D engine via the NDN-Common-Name-Library stack as a platform for experimenting with data-centric media. The objective is to provide a more natural networked media platform that does not have to deal with addresses (L2 or L3) but enables applications to publish and request media assets in namespaces that reflect the structure of the data. Combing this with other general ICN properties such as implicit multicast distribution and in-network caching results in a much more adequate platform for creating realtime multimedia experiences.

The TouchNDN workshop was one of REMAP's activities on converging their NDN research with artistic and cultural projects, trying to get NDN out of the lab and into the hands of creators in arts, culture, and entertainment. It is also an eye-opener for the ICN community for learning about trends and opportunities in real-time rendering and visual programming which seems to bear lots of potential for innovation -- both from the artistic as well as from the networking perspective.

Personally, I think it's a great, inspiring project that teaches us a lot about more interesting properties and metrics (flexible access, natural APIs, usability, utility for enabling innovations) compared to the usual quantitative performance metrics from the last century.

Inter-Server Game State Synchronization

Massive Multiplayer Online Role-Playing Games (MMORPGs) allow up to thousands of players to play in the same shared virtual world. Those worlds are often distributed on multiple servers of a server cluster, because a single server would not be able to handle the computational load caused by the large number of players interacting in a huge virtual world. This distribution of the world on a server cluster requires to synchronize relevant game state information among the servers. The synchronization requires every server to send updated game state information to the other servers in the cluster, resulting in redundantly sent traffic when utilizing current IP infrastructure.

In their paper Inter-Server Game State Synchronization using Named Data Networking Philipp Moll, Sebastian Theuermann, Natascha Rauscher, Hermann Hellwagner, and Jeff Burke started from the assumption that ICN's implicit multicast support and the ability to to decouple the game state information from the producing server could reduce the amount of redundant traffic and also help with robustness and availability in the presence of server failures.

They built a ICNified version of Minecraft and developed protocols for synchronizing game state in a server cluster over NDN. Their evaluation results indicated the benefits on an ICN-based approach for inter-server game state synchronization despite larger packet overheads (compared to TCP/IP). The authors made all their artefacts required for reproducing the results available on github.

Panel on Industry Applications of ICN

I had the pleasure of moderating a panel on industry applications of ICN, featuring Richard Chow (Intel), Kathleen Nichols (Pollere Inc.), and Kent Wu (Hong Kong Applied Science and Technology Research Institute). Recent ICN research has produced various platforms for experimentation and application development. One welcome development consists of initial ICN deployment mechanisms that do not require a forklift replacement of large parts of the Internet. At the same time, new technologies and use cases, such as edge computing, massively scalable multiparty communication, and linear video distribution, impose challenges on the existing infrastructure. This panel with experts from different application domains discussed pain points with current systems, opportunities and promising results for building specific applications with ICN, and challenges, shortcomings, and ideas for future evolution of ICN.

What was interesting to learn was how different groups pick up the results and available software to build prototypes for research and industry applications and what they perceive as challenges in applying ICN.

Decentralization

Growing concerns about centralization, surveillance and loss of digital sovereignty are currently fuelling many activities around P2P-inspired communication and storage networks, decentralized web ("web3") efforts as well as group such as the IRTF Research Group on Decentralized Internet Infrastructure (DINRG). One particular concern is the almost universal dependency on central cloud platforms for anchoring trust in applications that are actually of a rather local nature such as smart home platforms. Since such platforms often entail rent-seeking or surveillance-based business models, it is becoming increasingly important to investigate alternatives.

NDN/CCN-based ICN with its built-in PKI system provides some elements for an alternative design. In NDN/CCN it is possible to set up secure communication relationships without necessarily depending on third-party platforms which could be leveraged for more decentralized designs of IoT systems, social media and many other applications.

Decentralized and Secure Multimedia Sharing

A particularly important application domain is multimedia sharing where surveillance and manipulation campaigns by the dominant platforms have led to the development of alternative federated social media applications such as Mastodon and Diaspora. In their paper Decentralized and Secure Multimedia Sharing Application over Named Data Networking Ashlesh Gawande, Jeremy Clark, Damian Coomes, and Lan Wang described their design and implementation of npChat (NDN Photo Chat), a multimedia sharing application that provides similar functionality as today’s media-sharing based social networking applications without requiring any centralized service providers.

The major contributions of this work include identifying the specific requirements for a fully decentralized application, and designing and implementing NDN-based mechanisms to enable users to discover other users in the local network and through mutual friends, build friendship via multi-modal trust establishment mirrored from the real world, subscribe to friends’ multimedia data updates via pub-sub, and control access to their own published media.

This paper is interesting in my view because it illustrates the challenges and some design options nicely. It also suggests further research in terms of namespace design, name privacy and trust models. The authors developed an NDN-based prototype for Android systems that is supposed to appear on the Android Play store soon.

Exploring the Relationship of ICN and IPFS

We were happy to have David Dias, Adin Schmahmann, Cole Brown, and Evan Miyazono from Protocol Labs at the conference who held a tutorial on IPFS that also touched upon the relationship of IPFS and some ICN approaches.

Protocol Lab's InterPlanetary File System (IPFS) is a peer-to-peer content-addressable distributed filesystem that seeks to connect all computing devices with the same system of files. It is an opensource community-driven project, with reference implementations in Go and Javascript, and a global community of millions of users. IPFS resembles past and present efforts to build and deploy Information-Centric Networking approaches to content storage, resolution, distribution and delivery. IPFS and libp2p, which is the modular network stack of IPFS, are based on name-resolution based routing. The resolution system is based on Kademlia DHT and content is addressed by flat hash-based names. IPFS sees significant real-world usage already and is projected to become one of the main decentralised storage platforms in the near future. The objective of this tutorial is to make the audience familiar with IPFS and able to use the tools provided by the project for research and development.

Interestingly IPFS bear quite some similarities with earlier ICN systems such as NetInf but is using traditional transport and application layer protocols for the actual data transfer. One of the interesting research questions in that space are how IPFS system could be improved with today's ICN technology (as an underlay) but also how the design of a future IPFS-like system could leverage additional ICN mechanisms such as Trust Schema, data set reconciliation protocols, and remote method invocation. The paper Towards Peer-to-Peer Content Retrieval Markets: Enhancing IPFS with ICN by Onur Ascigil, Sergi Reñé, Michał Król et al. explored some of these options.

IoT

IoT is one of the interesting application areas for ICN, especially IoT in constrained environments, where the more powerful forwarding model (stateful forwarding and in-network caching) and the associated possibility for more fine-grained control of storage and communication resources incurs significant optimization potential (which was also a topic at this year's conference).

QoS Management in Constrained NDN Networks

Quality of Service (QoS) in the IP world mainly manages forwarding resources, i.e., link capacities and buffer spaces. In addition, Information Centric Networking (ICN) offers resource dimensions such as in-network caches and forwarding state. In constrained wireless networks, these resources are scarce with a potentially high impact due to lossy radio transmission. In their paper Gain More for Less: The Surprising Benefits of QoS Management in Constrained NDN Networks Cenk Gündoğan, Jakob Pfender, Michael Frey, Thomas C. Schmidt, Felix Shzu-Juraschek, and Matthias Wählisch explored the two basic service qualities (i) prompt and (ii) reliable traffic forwarding for the case of NDN. The resources that were taken into account are forwarding and queuing priorities, as well as the utilization of caches and of forwarding state space. The authors treated QoS resources not only in isolation, but also correlated their use on local nodes and between network members. Network-wide coordination is based on simple, predefined QoS code points. The results indicate that coordinated QoS management in ICN is more than the sum of its parts and exceeds the impact QoS can have in the IP world.

What I found interesting about his paper is the validation in real-world experiments that demonstrated impressive improvements, based on the coordinated QoS management approach. This work comes timely considering the current ICN QoS discussion in ICNRG, for example in draft-oran-icnrg-qosarch. Also, the authors made their artefacts available on github for enabling reproducing their results.

How Much ICN Is Inside of Bluetooth Mesh?

Bluetooth mesh is a new mode of Bluetooth operation for low-energy devices that offers group-based publish-subscribe as a network service with additional caching capabilities. These features resemble concepts of information-centric networking (ICN), and the analogy to ICN has been repeatedly drawn in the Bluetooth community. In their paper Bluetooth Mesh under the Microscope: How much ICN is Inside? Hauke Petersen, Peter Kietzmann, Cenk Gündoğan, Thomas C. Schmidt, and Matthias Wählisch compared Bluetooth mesh with ICN both conceptually and in real-world experiments. They contrasted both architectures and their design decisions in detail. They conducted experiments on an IoT testbed using NDN/CCNx and Bluetooth Mesh on constrained RIOT nodes.

Interestingly the authors found that the implementation of ICN principles and mechanisms in Bluetooth Mesh is rather limited. In fact, Bluetooth Mesh performs flooding without content caching and merely using the equivalent of multicast addresses as a surrogate for names. Based on these findings, the authors discuss options of how ICN support for Bluetooth could or should look like, so the paper is interesting both for understanding the actual working of Bluetooth Mesh as well as for ideas for improving Bluetooth Mesh. The authors made their artefacts available on github for enabling reproducing their results.

ICN and LoRa

LoRa is an interesting technology for its usage of license-free sub-gigahertz spectrum and bi-directional communication capabilities. We were happy to have Kent Wu and Xiaoyu Zhao from ASTRI at the conference and the ICNRG meeting who talked about their LoRa prototype development for a smart metering system for water consumption in Hong Kong. In addition to that, the ICNRG also discussed different options for integrating ICN and LoRa and got an update by Peter Kietzmann on the state of LoRa support in the RIOT OS. This is an exciting area for innovation, and we expect more work and interesting results in the future.

New Frontiers

Appying ICN to big data storage and processing and to distributed computing are really promising research directions that were explored by papers at the conference.

NDN and Hadoop

The Hadoop Distributed File System (HDFS) is a network file system used to support multiple widely-used big data frameworks that can scale to run on large clusters. In their paper On the Power of In-Network Caching in the Hadoop Distributed File System Eric Newberry and Beichuan Zhang evaluate the effectiveness of using in-network caching on switches in HDFS- supported clusters in order to reduce per-link bandwidth usage in the network.

They discovered that some applications featured large amounts of data requested by multiple clients and that, by caching read data in the network, the average per-link bandwidth usage of read operations in these applications could be reduced by more than half. They also found that the choice of cache replacement policy could have a significant impact on caching effectiveness in this environment, with LIRS and ARC generally performing the best for larger and smaller cache sizes, respectively. The authors also developed a mechanism to reduce the total per-link bandwidth usage of HDFS write operations by replacing write pipelining with multicast.

Overall, the evaluation results are promising, and it will be interesting to see how the adoption of additional ICN concepts and mechanisms and caching could be useful for big data storage and processing.

Compute-First Networking

Although, as a co-author, I am clearly biased, I am quite convinced of the potential for distributed computing and ICN that we described in a paper co-authored by Michał Król, Spyridon Mastorakis, David Oran, and myself.

Edge- and, more generally, in-network computing is receiving a lot attention in research and industry fora. What are the interesting research questions from a networking perspective? In-network computing can be conceived in many different ways – from active networking, data plane programmability, running virtualized functions, service chaining, to distributed computing. Modern distributed computing frameworks and domain-specific languages provide a convenient and robust way to structure large distributed applications and deploy them on either data center or edge computing environments. The current systems suffer however from the need for a complex underlay of services to allow them to run effectively on existing Internet protocols. These services include centralized schedulers, DNS-based name translation, stateful load balancers, and heavy-weight transport protocols.

Over the past years, we have been working on alternative approaches, trying to find ways for integrating networking and computing in new ways, so that distributed computing can leverage networking capabilities directly and optimize usage of networking and computing resources in a holistic fashion. Here is a summary of our latest paper.

Written by dkutscher

October 4th, 2019 at 12:33 am

Posted in Events

Tagged with , , , ,

2015 ACM SIGCOMM ICN Conference has started

without comments

The 2015 ICN conference has started in San Francisco today!

Program Overview

Wednesday

  • Tutorials on CCN and NDN
  • Posters and demostrations

Thursday

  • Keynote by Van Jacobson: Improving the Internet with ICN
  • Paper presentations on Routing, Node Architectures
  • Panel: ICN -- next two years
  • Poster Presentations

Friday

  • Paper presentation on In-Network Caching, Content & Applications, Security
  • Posters and demostrations

 

 

Written by dkutscher

September 30th, 2015 at 6:53 pm

Posted in Events

Tagged with , , , , , ,

Call for Papers: 2nd ACM Conference on Information-Centric Networking (ICN 2015)

without comments

ACM ICN 2015, September 30 - October 2, 2015, San Francisco, USA

The Call for Papers for the 2nd ACM Conference on ICN is out:

 

                         Call for Papers

** 2nd ACM Conference on Information-Centric Networking (ICN 2015) **

 

Sponsored by ACM and ACM SIGCOMM

 

http://conferences.sigcomm.org/acm-icn/2015

 

San Francisco, USA, September 30 - October 2, 2015

 

 

Information Centric Networking (ICN) is a new network architecture intended to provide access to information without requiring an explicit binding of that information to a particular location. By directly addressing information, ICN supports mobile users and mobile networked devices, offers a higher-level communication service to applications, and promotes authentication and efficiency in the transmission and dissemination of information. Over the last few years, a global research and development community has grown around the idea of ICN.

 

ACM ICN 2015 is the second edition of the ACM Conference on Information-Centric Networking, which follows a series of workshops on ICN held in conjunction with the ACM Sigcomm conference.  ACM ICN 2015 is the premier international forum for researchers and practitioners to present and discuss the most recent innovations, trends, experiences, and challenges in information centric networking.  ACM ICN 2015 will be a single-track conference featuring paper and poster presentations, panel discussions, and demonstrations.

 

The Technical Program Committee of ACM ICN 2015 invites high-quality submissions describing unpublished research results in all aspects of ICN, with particular emphasis on contributions to architectural designs and reproducible experimental evaluations.  Papers submitted for consideration should not have been already published elsewhere and should not be under review or submitted for review elsewhere during the consideration period.

Specifically, authors are required to adhere to the ACM Policy and Procedures on Plagiarism

(http://www.acm.org/publications/policies/plagiarism_policy) and the ACM Policy on Prior Publication and Simultaneous Submissions (http://www.acm.org/publications/policies/sim_submissions).

 

Topics of interest include:

 

* Architecture design and evaluation

* Comparison of different ICN architectures

* Interoperability across ICN architectures

* ICN evaluation methodology and metrics

* Analysis of scalability issues in ICN

* ICN enabled applications

* Routing in ICN

* Transport issues in ICN

* Caching

* Mobility support

* Trust management and access control

* Management in ICN

* ICN economics and business models

* Tools, experimentation facilities, and measurement methodology for ICN

* Experience from implementation

* Feasibility studies of ICN for high speed networking

* Privacy

* ICN Deployment

* ICN APIs

 

-----------------------

Submission Instructions

-----------------------

 

Submitted papers can be up to 10 pages in length following the SIGCOMM format. All submissions must be in English and in PDF format. Submissions that do not comply with these instructions will be rejected without review.

Papers must be submitted electronically through the ICN 2015 submission site.

 

Submissions will be reviewed and evaluated on the basis of originality, importance of contribution, soundness, evaluation, quality of presentation and appropriate comparison to related work. The program committee as a whole will make final decisions about which submissions to accept for presentation at the conference. The program committee may propose that authors present their work with a poster accompanied by a 2-page extended abstract. ACM ICN 2015 also invites proposals for demos, tutorials and panel sessions.

 

---------------

Important Dates

---------------

 

Full Paper Submission: May 22, 2015

Acceptance Notification: July 20, 2015

Camera Ready Due: Aug. 15, 2015

Conference: September 30 - October 2, 2015

 

-------------------------

Conference General Chairs

-------------------------

 

- Nacho (Ignacio) Solis (PARC, USA)

 

----------------------------------

Technical Program Committee Chairs

----------------------------------

 

- Antonio Carzaniga (USI, Switzerland)

- K. K. Ramakrishnan (UC Riverside, USA)

 

-----------------------------------

Technical Program Committee Members

-----------------------------------

 

- Mayutan Arumaithurai (University of Goettingen, Germany)

- Giuseppe Bianchi (University of Rome "Tor Vergata", Italy)

- Nicola Blefari-Melazzi (University of Rome "Tor Vergata", Italy)

- Jeff Burke (UCLA, USA)

- Kenneth Calvert (University of Kentuky, USA)

- Giovanna Carofiglio (Cisco)

- Patrick Crowley (Washington University, USA)

- Christian Esteve Rothenberg (UNICAMP, Brazil)

- JJ Garcia-Luna-Aceves (University of California Santa Cruz, USA)

- Toru Hasegawa (Osaka University, Japan)

- Jussi Kangasharju (University of Helsinki, Finland)

- Satyajayant Misra (New Mexico State University, USA)

- Vishal Misra (Columbia University, USA)

- Luca Muscariello (Orange Labs, France)

- Kiran Nagaraja (Ericsson)

- Dave Oran (Cisco, USA)

- Jörg Ott (Aalto University, Finland)

- Christos Papadopoulos (Colorado State University, USA)

- Craig Partridge (BBN, USA)

- Diego Perino (Alcatel Lucent, France)

- George Polyzos (AUEB, Greece)

- Yiannis Psaras (UCL, UK)

- Dipankar Raychaudhuri (Rutgers University, USA)

- Jim Roberts (IRT SystemX, France)

- Dario Rossi (Telecom ParisTech, France)

- Thomas Schmidt (HAW Hamburg, Germany)

- Jan Seedorf (NEC Labs Europe)

- Nacho (Ignacio) Solis (PARC, USA)

- Karen Sollins (MIT, USA)

- Christian Tschudin (Uni Basel, Switzerland)

- Arun Venkataramani (UMass, USA)

- Matthias Wählisch (FU Berlin, Germany)

- Roy Yates (Rutgers University, USA)

- Lixia Zhang (UCLA, USA)

 

 

------------

More Details

------------

 

Please see http://conferences.sigcomm.org/acm-icn/2015

 

Written by dkutscher

January 9th, 2015 at 9:57 am

Posted in Events

Tagged with , , ,

ACM SIGCOMM Conference on Information-Centric-Networking (ICN-2014)

without comments

We are running a conference on ICN in September 2014!

Some dates of interest:

  • May 30, 2014: Paper Submission Deadline
  • July 1, 2014: Tutorial and Panel Proposal Deadline
  • September 24-26, 2014: Conference

More information: http://conferences2.sigcomm.org/acm-icn/2014/index.php

Written by dkutscher

January 11th, 2014 at 8:38 pm

Posted in Events

Tagged with , ,