Dirk Kutscher

Personal web page

Archive for the ‘IRTF’ Category

New Internet Draft draft-irtf-icnrg-reflexive-forwarding-00

without comments

We updated our Internet Draft draft-irtf-icnrg-reflexive-forwarding-00 on Reflexive Forwarding for CCNx and NDN Protocols.

Current Information-Centric Networking protocols such as CCNx and NDN have a wide range of useful applications in content retrieval and other scenarios that depend only on a robust two-way exchange in the form of a request and response (represented by an Interest-Data exchange in the case of the two protocols noted above). A number of important applications however, require placing large amounts of data in the Interest message, and/or more than one two-way handshake. While these can be accomplished using independent Interest-Data exchanges by reversing the roles of consumer and producer, such approaches can be both clumsy for applications and problematic from a state management, congestion control, or security standpoint. This specification proposes a Reflexive Forwarding extension to the CCNx and NDN protocol architectures that eliminates the problems inherent in using independent Interest-Data exchanges for such applications. It updates RFC8569 and RFC8609.

The recent update includes a generalization of the main protocol specification, so that Reflexive Forwarding can be used in both CCNx and NDN.

Written by dkutscher

October 19th, 2024 at 7:52 am

RFC 9556: Internet of Things (IoT) Edge Challenges and Functions

without comments

Many Internet of Things (IoT) applications have requirements that cannot be satisfied by centralized cloud-based systems (i.e., cloud computing). These include time sensitivity, data volume, connectivity cost, operation in the face of intermittent services, privacy, and security. As a result, IoT is driving the Internet toward edge computing.

We have published RFC 9556, outlining the requirements of the emerging IoT edge and its challenges. It presents a general model and major components of the IoT edge to provide a common basis for future discussions in the Thing-to-Thing Research Group (T2TRG) and other IRTF and IETF groups.

Today, many IoT services leverage cloud computing platforms because they provide virtually unlimited storage and processing power. The reliance of IoT on back-end cloud computing provides additional advantages, such as scalability and efficiency. At the time of writing, IoT systems are fairly static with respect to integrating and supporting computation. It is not that there is no computation, but that systems are often limited to static configurations (edge gateways and cloud services).

However, IoT devices generate large amounts of data at the edges of the network. To meet IoT use case requirements, data is increasingly being stored, processed, analyzed, and acted upon close to the data sources. These requirements include time sensitivity, data volume, connectivity cost, and resiliency in the presence of intermittent connectivity, privacy, and security, which cannot be addressed by centralized cloud computing. A more flexible approach is necessary to address these needs effectively. This involves distributing computing (and storage) and seamlessly integrating it into the edge-cloud continuum. We refer to this integration of edge computing and IoT as "IoT edge computing". RFC 9556 describes the related background, use cases, challenges, system models, and functional components.

Written by dkutscher

May 7th, 2024 at 11:12 am

Posted in IRTF,Publications

Tagged with , , , ,