Archive for the ‘ICN’ tag
Networked Metaverse Systems
The term ‘Metaverse’ often denotes a wide range of existing and fictional applications. Nevertheless, there are actual systems today that can be studied and analyzed. However, whereas a considerable body of work has been published on applications and application ideas, there is less work on the technical implementation of such systems, especially from a networked systems perspective.
In a recently published open access journal article, we share some insights into the technical design of Metaverse systems, their key technologies, and their shortcomings, predominantly from a networked systems perspective. For the scope of this study, we define the ‘Metaverse’ as follows. The ‘Metaverse’ encompasses various current and emerging technologies, and the term is used to describe different applications, ranging from Augmented Reality (AR), Virtual Reality (VR),and Extended Reality (XR) to a new form of the Internet or Web. A key feature distinguishing the Metaverse from simple AR/VR is its inherently collaborative and shared nature, enabling interaction and collaboration among users in a virtual environment.
Building on Existing Platforms and Network Stacks
Most current Metaverse systems and designs are built on existing technologies and networks. For example, massively multiplayer online games such as Fortnite use a generalized client-server model. In this model, the server authoritatively manages the game state, while the client maintains a local subset of this state and can predict game flow by executing the same game code as the server on approximately the same data. Servers send information about the game world to clients by replicating relevant actors and their properties. Commercial social VR platforms such as Horizon Worlds and AltspaceVR use HTTPS to report client-side information and synchronize in-game clocks across users.
Mozilla Hubs, built with A-Frame (a web framework for building virtual reality experiences), uses WebRTC communication with a Selective Forwarding Unit (SFU). The SFU receives multiple audio and video data streams from its peers, then determines and forwards relevant data streams to connected peers. Blockchain or Non-Fungible Token (NFT)-based online games, such as Decentraland, run exclusively on the client side but allow for various data flow models, ranging from local effects and traditional client-server architectures to peer-to-peer (P2P) interactions based on state channels; Upland is built on EOSIO, an open-source blockchain protocol for scalable decentralized applications, and transports data through HTTPS. Connections between peers in Upland are established using TLS or VPN tunnels.
Many studies have focused on improving various aspects of Metaverse systems. For example, EdgeXAR is a mobile AR framework using edge offloading to enable lightweight tracking with six degrees of freedom (DOF) while reducing offloading delay from the user’s view; SORAS is an optimal resource allocation scheme for edgeenabled Metaverse, using stochastic integer programming to minimize the total network cost; Ibrahim et al. explores the issue of partial computation offloading for multiple subtasks in an in-network computing environment, aiming to minimize energy consumption and delay. However, these ideas for offloading computation and rendering tasks to edge platforms often conflict with the existing end-to-end transport protocols and overlay deployment models. Recently, a Deep Reinforcement Learning (DRL)-based multipath network orchestration framework designed for remote healthcare services is presented, automating subflow management to handle multipath networks. However, proposals for scalable multi-party communication would require interdomain multicast services, unavailable on today’s Internet.
Disconnect Between High-Level Concepts and Actual Systems
In practice, there is a significant disconnect between high-level Metaverse concepts, ideas for technical improvements, and systems that are actually developed and partially deployed. A 2022 ACM IMC paper titled Are we ready for metaverse?: a measurement study of social virtual reality platforms analyzes the performance of various social VR systems, pinpointing numerous issues related to performance, communication overhead, and scalability. These issues are primarily due to the fact that current systems leverage existing platforms, protocols, and system architectures, which cannot tap into any of the proposed architectural and technical enhancements, such as scalable multi-party communication, offloading computation, rendering tasks, etc.
Rather than merely layering ‘the Metaverse’ on top of legacy and not always ideal foundations, we consider Metaverse as a driver for future network and web applications and actively develop new designs to that end. In our article, we take a comprehensive systems approach and technically describe current Metaverse systems, focusing on their networking aspects. We document the requirements and challenges of Metaverse systems and propose a principled approach to system design for these requirements and challenges based on a thorough understanding of the needs of Metaverse systems, the current constraints and limitations, and the potential solutions of Internet technologies.
Article Overview
- We present a technical description of the ‘Metaverse’ based on existing and emerging systems, including a discussion of its fundamental properties, applications, and architectural models.
- We comprehensively study relevant enabling technologies for Metaverse systems, including HCI/XR technologies, networking, communications, media encoding, simulation, real-time rendering and AI. We also discuss current Metaverse system architectures and the integration of these technologies into actual applications.
- We conduct a detailed requirements analysis for constructing Metaverse systems. We analyze applications specific requirements and identify existing gaps in four key aspects: communication performance, mobility, large-scale operation,and end system architecture. For each area, we propose candidate technologies to address these gaps.
- We propose a research agenda for future Metaverse systems, based on our gap analysis and candidate technologies discussion. We re-assess the fundamental goals and requirements, without necessarily being constrained by existing system architectures and protocols. Based on a comprehensive understanding of what Metaverse systems need and what end-systems, devices, networks and communication services can theoretically provide, we propose specific design ideas and future research directions to realize Metaverse systems that can meet the expectations often articulated in the literature.
References
- Y. Zhang, D. Kutscher and Y. Cui; Networked Metaverse Systems: Foundations, Gaps, Research Directions; in IEEE Open Journal of the Communications Society, doi: 10.1109/OJCOMS.2024.3426098.
- Tianyuan Yu, Xinyu Ma, Varun Patil, Yekta Kocaogullar, Yulong Zhang, Jeff Burke, Dirk Kutscher, Lixia Zhang; Secure Web Objects: Building Blocks for Metaverse Interoperability and Decentralization; IEEE MetaCom 2024; August 12-14 2024; Hong Kong, China
- Dirk Kutscher, Jeff Burke, Giuseppe Fioccola, Paulo Mendes;
Statement: The Metaverse as an Information-Centric Network; 10th ACM Conference on Information-Centric Networking (ACM ICN '23); October 9 — 10, 2023, Reykjavik, Iceland - Giuseppe Fioccola , Paulo Mendes , Jeff Burke , Dirk Kutscher;
Information-Centric Metaverse; Internet Draft draft-fmbk-icnrg-metaverse-01; Work in Progress; July 2023
Secure Web Objects: Building Blocks for Metaverse Interoperability and Decentralization
In our upcoming paper at IEEE Metacom-2024, we propose a data-oriented approach for future Web and Metaverse system designs.
Abstract
This position paper explores how to support the Web's evolution through an underlying data-centric approach that better matches the data-orientedness of modern and emerging applications. We revisit the original vision of the Web as a hypermedia system that supports document composability and application interoperability via name-based data access. We propose the use of secure web objects (SWO), a data-oriented communication approach that can reduce complexity, centrality, and inefficiency, particularly for collaborative and local-first applications, such as the Metaverse and other collaborative applications. SWO are named, signed, application-defined objects that are secured independently of their containers or communications channels, an approach that leverages the results from over a decade-long data-centric networking research. This approach does not require intermediation by aggregators of identity, storage, and other services that are common today. We present a brief design overview, illustrated through prototypes for two editors of shared hypermedia documents: one for 3D and one for LaTeX. We also discuss our findings and suggest a roadmap for future research.
References
-
Tianyuan Yu, Xinyu Ma, Varun Patil, Yekta Kocaogullar, Yulong Zhang, Jeff Burke, Dirk Kutscher, Lixia Zhang; Secure Web Objects: Building Blocks for Metaverse Interoperability and Decentralization; IEEE MetaCom 2024, pre-print: https://arxiv.org/abs/2407.15221
-
Dirk Kutscher; Data-oriented, Decentralized, Daring: Opportunities and Research Challenges for an Information-Centric Web; Lightning Talk at NDNComm 2024; March 2024
-
Navin V. Keizer, Onur Ascigil, Michał Król, Dirk Kutscher, and George Pavlou; A Survey on Content Retrieval on the Decentralised Web; ACM Computing Surveys; March 2024; https://doi.org/10.1145/3649132
-
Dirk Kutscher, Jeff Burke, Giuseppe Fioccola, Paulo Mendes;
Statement: The Metaverse as an Information-Centric Network; 10th ACM Conference on Information-Centric Networking (ACM ICN '23); October 9 — 10, 2023, Reykjavik, Iceland; https://doi.org/10.1145/3623565.3623761
IRTF ICNRG@IETF-119
The Information-Centric Networking Research Group (ICNRG) of the Internet Research Task Force (IRTF) met at IETF-119 in Brisbane. Here is my quick summary of the meeting:
Agenda:
1 | ICNRG Chairs’ Presentation: Status, Updates | Chairs |
2 | Secure Web Objects and Transactions | Dirk Kutscher |
3 | Transaction Manifests | Marc Mosko |
4 | Vanadium: Secure, Distributed Applications | Marc Mosko |
5 | Global vs. Scoped Namespaces | Marc Mosko |
Meeting material:
ICNRG Status
ICNRG recently published four news RFCs – great achievement by all involved authors and the whole group!
- RFC 9510: Alternative Delta Time Encoding for Content-Centric Networking (CCNx) Using Compact Floating-Point Arithmetic
- RFC 9531: Path Steering in Content-Centric Networking (CCNx) and Named Data Networking (NDN)
- RFC 9508: Information-Centric Networking (ICN) Ping Protocol Specification
- RFC 9507: Information-Centric Networking (ICN) Traceroute Protocol Specification
See my blog posting for a more detailed description.
Secure Web Objects and Transactions
One focus of this meeting was transactions in ICN, i.e., interactions with the intention to achieve some durable state change at a remote peer – which imposes some challenges in a system that is designed around accessing named data.
In my presentation I talked about different ways to realize transactions in ICN:
- ICN as a network layer
- Client-server communication between two nodes
- Implement transaction semantics on top of an ICN messaging service
- Recording state changes in shared data structures
- Shared namespace, potentially functioning as a transaction ledger
- Still need to think about atomicity etc
For 1) transactions as messaging over ICN networks, the following considerations apply:
- Client-server communication between two nodes
- Implement transaction semantics on top of an ICN messaging service
- Different approaches
- A: Traditional layering: Using NDN-like systems as a messaging layer
- Assign prefixes to client & servers
- Send messages back and forth, and implement reliability and transactions semantics on top
- B: ICN-native communication: Use Interest-Data as request-response abstraction for transactions
- Mapping transaction communication and state evolution more directly to ICN, e.g., Interest-Data in NDN
- Collapsing traditional network, transport, application layer functions
I mainly talked about variant 1B, ICN-native communication: Use InterestData as request-response abstraction for transactions and introduced the idea of "Secure Web Objects" (SWOs) for a data-oriened web as a motivation.
In such a system, not everything would be about accessing named data object – there is also a need for "client/server" state evolution, e.g., for online banking and similar use cases.
I introduced some ideas on RESTful ICN that we published in an earlier paper. The Restful ICN proposal leverages Reflexive Forwarding, for robust client-server communication and integrates elements of CCNx key exchange for security context setup and session resumption.
Summarizing, I wanted to initiate a discussion about how to realize transactions in information-centric systems? This discussion is not about mapping ICN to existing protocols, such as HTTP, but about actual distributed computing semantics, i.e., robust session setup and state evolution. Transactions with ICN-native communication are hard to provide with with basic Interest/Data. Reflexive Forwarding + CCNx Key Exchange + transaction semantics are an attempt to provide such a service in a mostly ICN-idiomatic way, with the downside that reflexive forwarding needs extensions to forwarders. This raises question on the minimal feature set of core ICN protocols, and to deal with extensions.
In the discussion, it was pointed out that lots of experience on distributed systems has shown that transactions or secure multi-interactions will generally require more than a single two-way exchange.
Others suggested that ICN and NDN has authentication carried out when the signed interest arrives which directly proves authentication, so that the authentication would in fact be done beforehand.
However, authentication may not be enough. For example, client authorization in client-server communication is a critical function which needs to be carefully designed in real-world networks. For example, forcing a server to do signature verification on initial request arrival has been shown in prior systems (e.g. TCP+TLS) to represent a serious computational DOS attack risk. Reflexive Forwarding in RICE tries to avoid exactly that problem, by enabling the server to iteratively authenticate and authorize clients before committing computing resources.
It was also said that whenever a protocol does authentication. you need to analyze in the context of specific examples to discuss, and that cannot only look at the problem at an abstract level.
Transaction Manifests
Marc Mosko presented another approach to transactions in ICN, called [Transaction Manifests](https://datatracker.ietf.org/meeting/119/materials/slides-119-icnrg-transaction-manifests-00 "Transaction Manifests "Transaction Manifests"). He explained that ICN can be transactional.
Typically, ICN is considered as a publish/subscribe or pre-publishing of named-data approach. Outside ICN, distributed transactions do exist, especially in DLTs. For example, considering a permissioned DLT with size N and K << N bookkeepers. In a DLT, they base their decision on the block hash history. In this talk, Marc discussed what would be an equivalent function in ICN, and introduced the notion of transaction manifests.
In ICN, there is a technology called FLIC (File-like collections), i.e., manifests for static objects. FLIC describes a single object that is re-constructed by traversing the manifest in order. In Marc's proposal, a transaction manifest describes a set of names that must be considered together. The transaction manifest names likely point to FLIC root manifests.
In the example above, transaction manifest entries entries point directly to objects. For a complete systems, you would also need a set of bookkeepers, e.g., systems like Hyperledger offering global ordering vis bespoke orderer nodes. Such bookkeeper would have to ensure that a transaction has current pre-conditions, current post-conditions, and no conflicts in post-conditions. Transaction manifests are a form of write-ahead logs (WAL), as used in databases, such as PostgreSQL.
Marc went on discussing a few challenges, such as interactions with repositories and caches, as well as distributed transaction manifests.
There was some discussion on the required ordering properties for this approach, i.e., whether, in a multi-bookkeeper system, livelocks and deadlocks could occur – and whether these could resolved without requiring a total order.
Marc is continueing to work on this. One of the next steps would be to design client-to-bookkepper and bookkeeper-to-bookkeeper protocols.
Vanadium: Secure, Distributed Applications
Marc Mosko introduced the Vanadium system, a secure, distributed RPC system based on distributed naming and discovery. Vanadium uses symmetrical authentication and encryption and may use private name discovery with Identity-Based-Encryption (IBE).
Vanadium has two parts:
- Principals and Blessings and Caveats (Security)
- Use a hierarchical name, e.g. alice:home:tv.
- Certificate based
- Blessings are scoped delegations from one principal to another for a namespace (e.g. alice grants Bob “watch” permissions to the TV)
- Caveats are restrictions on delegations (e.g. Bob can only watch 6pm – 9pm).
- 3rd party caveats must be discharged before authorization
- E.g. revocations or auditing
- The RPC mount tables (Object Naming)
- These describe how to locate RPC namespaces
- They provide relative naming
Vanadium is interesting because parts of its design resemble some ICN concepts, especially the security part:
- It uses prefix matching and encryption
- Namespaces work like groups
- The colon : separates the blesser from the blessed
- Authorizations match extensions.
- If Alice authorized “read” to alice:hometv to alice:houseguests, and if Bob has a blessing for alice:houseguests:bob, then Bob has “read” to alice:hometv.
- A special terminator :$ only matches the exact prefix.
- A blessing to alice:houseguest:$ only matches that exact prefix.
Marc then explain the object naming structure and the entity resolution in Vanadium.
More details can be found in Marc's presentation and on Vanadium's web page.
In summary, Vanadium is a permissioned RPC service. A Vanadium name encodes the endpoint plus name suffix. The endpoint does not need to resolve to a single mount table server, it could be any server that possesses an appropriate blessing. Authentication is done via pair-wise key exchange and blessing validations. It can be private if using IBE, otherwise server name leaks. Authorizations and Blessings and Caveats use hierarchical, prefixmatching names.
From an ICN perspective, the security approach seems interesting. Blessings and Caveats and discharges and namespaces as groups. One question is how this differs from SDSI co-signings. The Vanadium identity service provides an interesting mapping of OAuth2 app:email tokens to PKI and blessings. The RPC approach exhibits some differences to ICN, e.g., embedding the endpoint identifier in the name. ICN technologies in this context are public-key scoped names in CCNx and schematized trust anchors in NDN.
In the discusion, it was noted that it would be interesting to do an apples-to-apples comparison to the NDN trust schema approach; Vanadium's approach with the ability to create blessings and caveats on demand seems to be much more granular and dynamic.
Global vs. Scoped Namespaces
Marc Mosko discussed global vs. scoped namespaces. For example, how do you know that the key you are looking at is the key that you should be looking at? IPFS punts that to out-of-band mechanisms. CCNX on the other hand uses public key scoped names; you can put a public key, publisher ID in an interest and say you only wanyt this name if signed with the associated key.
It was suggested to re-visit some of the concepts in the RPC system of OSF distributed computing, where all namespaces were scoped, and name discovery starts out as local. You could then "attach" a local namespace to more global namespace via an explicit "graft" operation. The key here was that the authoritative pointers representing the namespace graph were from child to parent, as opposed to parent to child as it is with systems like DNS. Your local trust root identifier could become a name in a higher layer space, yielding a trust root higher in the hierarchy tha could be used instead of or in addition to your local trust root. Doing this can create progressively more global name spaces out of local ones.
Please check out the meeting video for the complete discussion at the meeting.
Information-Centric Networking RFCs
In the Information-Centric Networking Research Group (ICNRG) of the Internet Research Task Force (IRTF) we have recently published a set of new RFCs:
RFC 9510: Alternative Delta Time Encoding for Content-Centric Networking (CCNx) Using Compact Floating-Point Arithmetic
Content-Centric Networking (CCNx) utilizes delta time for a number of functions. When using CCNx in environments with constrained nodes or bandwidth-constrained networks, it is valuable to have a compressed representation of delta time. In order to do so, either accuracy or dynamic range has to be sacrificed. Since the current uses of delta time do not require both simultaneously, one can consider a logarithmic encoding. This document updates RFC 8609 ( to specify this alternative encoding.
RFC 9531: Path Steering in Content-Centric Networking (CCNx) and Named Data Networking (NDN)
Path steering is a mechanism to discover paths to the producers of Information-Centric Networking (ICN) Content Objects and steer subsequent Interest messages along a previously discovered path. It has various uses, including the operation of state-of-the-art multi-path congestion control algorithms and for network measurement and management. This specification derives directly from the design published in https://dl.acm.org/doi/10.1145/3125719.3125721 (4th ACM Conference on Information-Centric Networking) and, therefore, does not recapitulate the design motivations, implementation details, or evaluation of the scheme. However, some technical details are different, and where there are differences, the design documented here is to be considered definitive.
RFC 9508: Information-Centric Networking (ICN) Ping Protocol Specification
This document presents the design of an Information-Centric Networking (ICN) Ping protocol. It includes the operations of both the client and the forwarder.
Ascertaining data plane reachability to a destination and taking coarse performance measurements of Round-Trip Time (RTT) are fundamental facilities for network administration and troubleshooting. In IP, where routing and forwarding are based on IP addresses, ICMP Echo Request and ICMP Echo Reply packets are the protocol mechanisms used for this purpose, generally exercised through the familiar ping utility. In Information-Centric Networking (ICN), where routing and forwarding are based on name prefixes, the ability to ascertain the reachability of names is required.
In order to carry out meaningful experimentation and deployment of ICN protocols, new tools analogous to ping and traceroute used for TCP/IP are needed to manage and debug the operation of ICN architectures and protocols. This document describes the design of a management and debugging protocol analogous to the ping protocol of TCP/IP; this new management and debugging protocol will aid the experimental deployment of ICN protocols. As the community continues its experimentation with ICN architectures and protocols, the design of ICN Ping might change accordingly. ICN Ping is designed as a "first line of defense" tool to troubleshoot ICN architectures and protocols. As such, this document is classified as an Experimental RFC. Note that a measurement application is needed to make proper use of ICN Ping in order to compute various statistics, such as average, maximum, and minimum Round-Trip Time (RTT) values, variance in RTTs, and loss rates.
RFC 9507: Information-Centric Networking (ICN) Traceroute Protocol Specification
This document presents the design of an Information-Centric Networking (ICN) Traceroute protocol. This includes the operation of both the client and the forwarder.
In TCP/IP, routing and forwarding are based on IP addresses. To ascertain the route to an IP address and to measure the transit delays, the traceroute utility is commonly used. In Information-Centric Networking (ICN), routing and forwarding are based on name prefixes. To this end, the ability to ascertain the characteristics of at least one of the available routes to a name prefix is a fundamental requirement for instrumentation and network management. These characteristics include, among others, route properties such as which forwarders were transited and the delay incurred through forwarding.
In order to carry out meaningful experimentation and deployment of ICN protocols, new tools analogous to ping and traceroute used for TCP/IP are needed to manage and debug the operation of ICN architectures and protocols. This document describes the design of a management and debugging protocol analogous to the traceroute protocol of TCP/IP; this new management and debugging protocol will aid the experimental deployment of ICN protocols. As the community continues its experimentation with ICN architectures and protocols, the design of ICN Traceroute might change accordingly. ICN Traceroute is designed as a tool to troubleshoot ICN architectures and protocols.
Data-oriented, Decentralized, Daring: Opportunities and Research Challenges for an Information-Centric Web
Research and development in ICN has led to different communication patterns such as Sync and API implementations such as CNL. It is now time to think about how to leverage Information-Centric principles for providing better foundations for hypermedia applications in the future web. At NDNComm-2024 I talked about how ICN could possibly help, what could be fruitful future research directions, and why web3 and dweb are not the answer.
Material
Towards a Unified Transport Protocol for In-Network Computing in Support of RPC-based Applications
The emerging term In-Network Computin (INC) [inc] in particular refers applying on-path programmable networking devices (e.g., switches and routers between clients and servers) as an accelerator or function offloader to boost throughput, reduce server load, or improve latency, typically in a well-controlled data center network environment.
Some INC implementations evolved from programmable data plane systems and align with the trend of network programmability at large. In recent year, it has been shown to support many promising applications (e.g., caching, aggregation, and agreement). For example, in distributed machine learning (DML), training nodes produce data (gradients) that needs to be aggregated or reduced -- and the result could be distributed to one or multiple consumers. As another example, the NetClone system [netclone] uses in-network forwarder to replicate RPC invocation messages and to perform more informed forwarding based on observed latencies for accelerating RPC communication.
While it is possible to achieve this kind of operation purely with end-to-end communication between worker nodes, performance can be dramatically improved by offloading both the operation processing and the data dissemination to nodes in the network. These in-network processors are often conceived as semi-transparent performance enhancing on-path elements, i.e., they are not the actual endpoints in transport protocol sessions and would intercept packets with application data and potentially generate new data that they would have to transmit.
In our Internet Draft draft-song-inc-transport-protocol-req-01.txt, we are discussing this problem and are formulating some requirements for the design of future transport protocols in this space.
References
- Collective Communication: Better Network Abstractions for AI
- Computing in the Network – Lessons Learned and New Opportunities
- [I-D.yao-tsvwg-cco-problem-statement-and-usecases] Yao, K., Shiping, X., Li, Y., Huang, H., and D. KUTSCHER, "Collective Communication Optimization: Problem Statement and Use cases", Work in Progress, Internet-Draft, draft-yao-tsvwg-cco-problem-statement-and-usecases-00, 23 October 2023, https://datatracker.ietf.org/doc/html/draft-yao-tsvwg-cco-problem-statement-and-usecases-00.
- [inc] Klenk et al., B., "An In-Network Architecture for Accelerating Shared-Memory Multiprocessor Collectives", ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020, <https:dx.doi.org/10.1109/ISCA45697.2020.00085>
- [netclone] Kim, G., "NetClone: Fast, Scalable, and Dynamic Request Cloning for Microsecond-Scale RPCs", In Proceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM '23). Association for Computing Machinery, New York, NY, USA, 195-207, 2023 https://dl.acm.org/doi/10.1145/3603269.3604820
Cornerstone: Automating Remote NDN Entity Bootstrapping
We published a paper on automated remote bootstrapping in Named Data Networking (NDN):
Tianyuan Yu, Xinyu Ma, Hongcheng Xie, Dirk Kutscher, Lixia Zhang; Cornerstone: Automating Remote NDN Entity Bootstrapping; Asian Internet Engineering Conference (AINTEC) 2023; December 2023; doi/10.1145/3630590.3630598
Abstract
To secure all communications, Named Data Networking (NDN) requires that each entity joining an NDN network go through a bootstrapping process first, to obtain its initial security credentials. Several solutions have been developed to bootstrap IoT devices in localized environments, where the devices being bootstrapped are within the physical reach of their bootstrapper. However, distributed applications need to bootstrap remote users and devices into an NDN-based system over insecure Internet connectivity. In this work, we take Hydra, a federated distributed file storage system made of servers contributed by multiple participating organizations, as a use case to drive the design and development of a remote bootstrapping solution, dubbed Cornerstone. We describe the design of Cornerstone, evaluate its effectiveness, and discuss the lessons learned from this process.
Rethinking LoRa for the IoT: An Information-centric Approach
We just published our IEEE Communications Magazine article on Rethinking LoRa for the IoT with an Open Access license.
LoraWAN and the Internet
Internet of Things (IoT) interconnects numerous sensors and actuators either locally or across the global Internet. From an application perspective, IoT systems are inherently data-oriented, their purpose is often to provide access to named sensor data and control interfaces. From a device and communication perspective, things in the IoT are resource-constrained devices that are commonly powered by a small battery and communicate wirelessly.
LoRaWAN systems today integrate the LoRa physical layer with the LoRaWAN MAC layer and corresponding infrastructure support. Among the IoT radio technologies, LoRa is a versatile and popular candidate since it provides a physical layer that allows for data transmission over multiple kilometers with minimal energy consumption. At the same time, the high LoRa receiver sensitivity enables packet reception in noisy environments, which makes it attractive for industrial deployments. On the downside, LoRa achieves only low data rates requiring long on-air times, and significantly higher latencies compared to radios that are typically used for Internet access.
LoraWAN MAC Layer
The LoRaWAN MAC layer and network architecture that is often used in LoRa deployments, thus provide a vertically integrated sensor data delivery service on top of the LoRa PHY that implements media access and end-to-end network connectivity. Unfortunately, LoRaWAN cannot utilize the LoRa PHY to its best potential with respect to throughput and robustness and is mostly used for upstream-only communication. It is not intended to directly interconnect with the Internet, but relies on a bespoke middlebox architecture consisting of gateways and network servers. Overall LoRaWAN has the following main problems, as depicted in the figure below.
- Centralization around a network server prevents data sharing between users, across distributed applications, and requires permanent infrastructure backhaul of the wireless access network.
- Uplink-oriented and uncoordinated communication leads to wireless interference. Downlink traffic is rarely available in practice and suffers from scalability issues.
Data-centric Delay-tolerant End-to-End Communication over the Internet
This paper presents an overview about recent advancements to enable data-centric, long-range IoT communication based on LoRa. The proposed network system aims for delay-tolerant, bi-directional communication in the presence of vastly longer latencies and lower bandwidth compared to regular Internet systems – without relying on vertically integrated middlebox-based architectures. The resulting system resolves current LoRaWAN performance issues using two main building blocks: a new network layer based on Information-centric Networking (ICN) and a new MAC layer.
Originally designed for non-constrained wired networks to abandon the end-to-end paradigm and access data only by names instead of IP endpoints, ICN migrated to the constrained wireless IoT over the past years. ICN still lacks a lower layer definition but provides mechanisms that are beneficial for the challenging LoRa domain: Decoupling of content from endpoints separates data access from physical infrastructure. Inherent content caching and replication potentially reduce link load, thus, wireless interference, and it preserves battery resources. The ICN-LoRa system presented in this paper bases its design on IEEE 802.15.4 DSME which was originally designed for low-power personal area networks. This MAC handles media access reliably using time- and frequency multiplexing, and enables reliable bi-directional communication.
Synergizing the advantages of LoRa, DSME, and ICN enables delay-tolerant, bi-directional LoRa communication, wich enhances many existing IoT applications. Wide area data retrieval and control as for solar power stations or smart street lighting systems are facilitated by the new MAC and its ICN integration. High voltage overhead line monitoring connecting voltage sensors and transformers relies on high data reliability, even under intermittent connectivity or loss. ICN achieves this, employing content caching and replication. Traveling container monitoring (RFC 7744) is challenging due to mobility and interference from metallic surfaces, where LoRa surpasses other radio systems. Decoupling content from its location for mobile containers and an adaptation to long producer delays are naturally contributed by LoRa-ICN.
Results
In our paper, we provide the essential technical background and challenges to design a LoRa-ICN system. We identify the key performance potentials of five protocol variants based on an implementation in RIOT OS and experiments on off-the-shelf IoT devices.
LoRa is an attractive radio technology for the IoT, providing a long wireless transmission range for battery-driven devices. Its versatility is hindered, though, by common deployments with LoRaWAN. We re-visited LoRa in the IoT to provide a serverless, data-oriented communication service. We presented the design of a new media access and network layer that leverages 802.15.4 DSME and Information-centric Networking to allow for reliable LoRa transmissions. To scale to a global Internet (of Things), LoRa-ICN facilitates ubiquitous connectivity of constrained nodes and robust bi-directional communication in the presence of power-saving regimes and high loss rates.
We showed that vastly higher latencies in low-power wireless domains can be addressed by extending the default ICN node behavior at the network edge. Two protocol extensions enable ICN-style data transport between resource-constrained LoRa nodes and a domain-agnostic application on the ICN Internet. The core idea is not limited to LoRa but caters to various delay-prone scenarios. Our experiments based on common IoT hardware and software showed significant performance improvements and further optimization potential compared to Vanilla ICN.
The new LoRa-ICN system paves the way for more versatile LoRa deployments in the IoT that serve additional use cases, mixed sensor-actor topologies, or firmware updates utilizing beacon overloading.
References
This article
- P. Kietzmann, J. Alamos, D. Kutscher, T. C. Schmidt and M. Wählisch, Rethinking LoRa for the IoT: An Information-centric Approach in IEEE Communications Magazine, doi: 10.1109/MCOM.001.2300379.
Reflexive forwarding
The ICN communication mechanisms this work is based on.
- Reflexive Forwarding in NDN
- Oran, D. R. and D. Kutscher; Reflexive Forwarding for CCNx and NDN Protocols; Work in Progress; Internet-Draft draft-oran-icnrg-reflexive-forwarding-05; 26 March 2023
In-depth publications this work is based on
- Peter Kietzmann, José Alamos, Dirk Kutscher, Thomas C. Schmidt, and Matthias Wählisch. 2022. Delay-tolerant ICN and its application to LoRa. In Proceedings of the 9th ACM Conference on Information-Centric Networking (ICN '22). Association for Computing Machinery, New York, NY, USA, 125–136. https://doi.org/10.1145/3517212.3558081
- P. Kietzmann, J. Alamos, D. Kutscher, T. C. Schmidt and M. Wählisch, Long-Range ICN for the IoT: Exploring a LoRa System Design, 2022 IFIP Networking Conference (IFIP Networking), Catania, Italy, 2022, pp. 1-9, doi: 10.23919/IFIPNetworking55013.2022.9829792. https://ieeexplore.ieee.org/document/9829792
- José Álamos, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. 2022. DSME-LoRa: Seamless Long-range Communication between Arbitrary Nodes in the Constrained IoT. ACM Trans. Sen. Netw. 18, 4, Article 69 (November 2022), 43 pages. https://doi.org/10.1145/3552432
ICNRG @ IETF-118
We have posted the agenda our ICNRG meeting at IETF-118:
Drafts
- https://datatracker.ietf.org/doc/draft-irtf-icnrg-flic/
- https://datatracker.ietf.org/doc/draft-yao-tsvwg-cco-problem-statement-and-usecases/00/
- https://datatracker.ietf.org/doc/draft-yao-tsvwg-cco-requirement-and-analysis/00/
- https://datatracker.ietf.org/doc/draft-li-icnrg-damc/
Logistics
ICNRG Meeting at IETF-118 – 2023-11-07, 08:30 to 10:30 UTC
Collective Communication: Better Network Abstractions for AI
We have submitted two new Internet Drafts on Collective Communication:
-
Kehan Yao , Xu Shiping , Yizhou Li , Hongyi Huang , Dirk Kutscher; Collective Communication Optimization: Problem Statement and Use cases; Internet Draft draft-yao-tsvwg-cco-problem-statement-and-usecases-00; work in progress; October 2023
-
Kehan Yao , Xu Shiping , Yizhou Li , Hongyi Huang , Dirk Kutscher; Collective Communication Optimization: Requirement and Analysis; Internet Draft draft-yao-tsvwg-cco-requirement-and-analysis-00; work in progress; October 2023
Collective Communication refers to communication between a group of processes in distributed computing contexts, for example involving interaction types such as broadcast, reduce, all-reduce. This data-oriented communication model is employed by distributed machine learning and other data processing systems, such as stream processing. Current Internet network and transport protocols (and corresponding transport layer security) make it difficult to support these interactions in the network, e.g., for aggregating data on topologically optimal nodes for performance enhancements. These two drafts discuss use cases, problems, and initial ideas for requirements for future system and protocol design for Collective Communication. They will be discussed at IETF-118.