Dirk Kutscher

Personal web page

Archive for the ‘lora’ tag

Information-Centric Long-Range Networking: Re-Imagining LoRaWAN

without comments

LoRaWAN is a popular low-power long-range communication system for IoT that is suitable for single-site deployments as well as for larger networks. It consists of LoRa, a PHY layer that allows for radio communication between 2 and 14 km, and higher-layer protocols mainly to upload IoT data to a serverbased infrastructure. These characteristics make LoRaWAN a promising option for many urban and rural IoT scenarios.

The LoRaWAN network design incurs, however, four notable shortcomings:

  1. LoRaWAN is heavily optimized towards retrieving data from constrained Nodes. Sending data to Nodes is expensive and involves significant latencies. Many networks such as the popular community The Things Network (TTN) thus deprecate sending data to Nodes above a very low message rate, making LoRaWAN unsuitable for most control scenarios.
  2. LoRaWAN has not been designed with the objective to provide a platform for Internet protocols. It is possible to use IP and adaptation layers on top of LoRaWAN, albeit very inefficiently.
  3. The whole LoRaWAN system is a vertically integrated stack that leads to inflexible system designs and inefficiencies. For example, all communication is channeled through LoRaWAN Gateways as well as Application- and Network Servers that interconnect with applications.
  4. The centralization and lock-in into vertical protocol stacks challenge data sharing (between users) and the creation of distributed applications (across LoRa island and the Internet).

A new LoraWAN architecture based on DSME and ICN

In our IFIP Networking 2022 paper "Long-Range ICN for the IoT: Exploring a LoRa System Design", Peter Kietzmann, José Alamos, Thomas C. Schmidt, Matthias Wählisch, and myself aim for a better integration of the LoRa-based Internet of Things into the remaining Internet. We base our system design on the following four requirements:

  1. enabling LoRa networks and Nodes in these networks to communicate directly with hosts on the Internet;
  2. empowering LoRa Gateways to act as routers, without the need to employ Network Servers and to tunnel all traffic to or from them;
  3. enabling secure data sharing and wireless Node control; and
  4. maintaining the important power conservation and robustness properties of current LoRaWAN systems.

To achieve these goals without abandoning the benefits of the LoRA PHY (i.e., a robust, energy-efficient long-range communication channel) we developed both a complete redesign of the MAC layer and a data-oriented network layer on top. Our work leverages two key building blocks.

  1. the Deterministic and Synchronous Multi-Channel Extension (DSME) extension to IEEE 802.15.4e, a flexible MAC layer that consists of contention-access and contention-free periods, and,
  2. the Information-Centric Networking (ICN) protocol NDN, which provides secure access to named data in networks.

LoRa and ICN

Prior work showed that ICN provides clear benefits over traditional IP and CoAP or MQTT stacks in the IoT. Our research showed that ICN is also well-suited for LoRa networks because its hop-wise data replication increases robustness and flexibility while reducing retransmission load. This enhances adaptivity and decreases communication overhead, whereas link capacity is scarce with LoRa. Named and authenticated data access enables location-independence since applications can access named data directly, without resorting to lower-layer addresses. Furthermore, built-in caches in ICN facilitate more efficient LoRa networks. Requests that are satisfied by an in-network cache

  1. reduce link utilization, to improve on air time and wireless interference;
  2. facilitate Node sleep; and
  3. reduce long round trips introduced by slow transmissions.


In our paper, we describe

  1. the design of ICN over LoRa, including a suitable DSME configuration and options for mapping ICN messages to DSME;
  2. a complete simulation environment in OMNeT++ that combines ccnSim as an ICN stack, openDSME as a MAC layer, and FLoRa to simulate LoRa-type devices—and a demonstration of our adaptation layers in that system.
  3. Preferred mappings and additional Node requirements for implementing relevant ICN interaction patterns, based on our simulation results.

Code and documentation is available at https://github.com/inetrg/IFIP-Networking-LoRa-ICN-2022, and the whole system is currently being implemented for the RIOT Operating System.


Written by dkutscher

May 17th, 2022 at 3:01 pm

Posted in Publications

Tagged with , ,

Re-Thinking LoRaWAN

without comments

Low-power, long-range radio systems such as LoRaWAN represent one of the few remaining networked system domains that still feature a complete vertical stack with special link- and network layer designs independent of IP. Similar to local IoT systems for low-power networks (LoWPANs), the main service of these systems is to make data available at minimal energy consumption, but over longer distances. LoRaWAN (the system that comprises the LoRa PHY and MAC) supports bi-directional communication, if the IoT device has the energy budget. Application developers interface with the system using a centralized server that terminates the LoRaWAN protocol and makes data available on the Internet.

While LoRaWAN applications are typically providing access to named data, the existing LoRaWAN stack does not support this way of communicating. LoRaWAN is device-centric and is generally designed as a device-to-server messaging system – with centralized servers that serve as rendezvous point for accessing sensor data. The current design imposes rigid constraints and does not facilitate accessing named data natively, which results in many point solutions and dependencies on central server instances.

In our demo paper & presentation at ACM ICN-2020, we are therefore describing how Information-Centric Networking could provide a more natural communication style for LoRa applications and how ICN could help to conceive LoRa networks in a more distributed fashion compared to todays mainstream LoRaWAN deployments. For LoWPANs (e.g., 802.15.4 networks), ICN has already demonstrated to be an attractive and viable alternative to legacy integrated special purpose stacks – we believe that
LoRa communication provides similar opportunities.

Watch my Peter Kietzmann's talk about it here:

Written by dkutscher

October 6th, 2020 at 10:39 pm

Posted in Events,IRTF,Projects,Talks

Tagged with , , ,