Archive for the ‘path steering’ tag
Information-Centric Networking RFCs
In the Information-Centric Networking Research Group (ICNRG) of the Internet Research Task Force (IRTF) we have recently published a set of new RFCs:
RFC 9510: Alternative Delta Time Encoding for Content-Centric Networking (CCNx) Using Compact Floating-Point Arithmetic
Content-Centric Networking (CCNx) utilizes delta time for a number of functions. When using CCNx in environments with constrained nodes or bandwidth-constrained networks, it is valuable to have a compressed representation of delta time. In order to do so, either accuracy or dynamic range has to be sacrificed. Since the current uses of delta time do not require both simultaneously, one can consider a logarithmic encoding. This document updates RFC 8609 ( to specify this alternative encoding.
RFC 9531: Path Steering in Content-Centric Networking (CCNx) and Named Data Networking (NDN)
Path steering is a mechanism to discover paths to the producers of Information-Centric Networking (ICN) Content Objects and steer subsequent Interest messages along a previously discovered path. It has various uses, including the operation of state-of-the-art multi-path congestion control algorithms and for network measurement and management. This specification derives directly from the design published in https://dl.acm.org/doi/10.1145/3125719.3125721 (4th ACM Conference on Information-Centric Networking) and, therefore, does not recapitulate the design motivations, implementation details, or evaluation of the scheme. However, some technical details are different, and where there are differences, the design documented here is to be considered definitive.
RFC 9508: Information-Centric Networking (ICN) Ping Protocol Specification
This document presents the design of an Information-Centric Networking (ICN) Ping protocol. It includes the operations of both the client and the forwarder.
Ascertaining data plane reachability to a destination and taking coarse performance measurements of Round-Trip Time (RTT) are fundamental facilities for network administration and troubleshooting. In IP, where routing and forwarding are based on IP addresses, ICMP Echo Request and ICMP Echo Reply packets are the protocol mechanisms used for this purpose, generally exercised through the familiar ping utility. In Information-Centric Networking (ICN), where routing and forwarding are based on name prefixes, the ability to ascertain the reachability of names is required.
In order to carry out meaningful experimentation and deployment of ICN protocols, new tools analogous to ping and traceroute used for TCP/IP are needed to manage and debug the operation of ICN architectures and protocols. This document describes the design of a management and debugging protocol analogous to the ping protocol of TCP/IP; this new management and debugging protocol will aid the experimental deployment of ICN protocols. As the community continues its experimentation with ICN architectures and protocols, the design of ICN Ping might change accordingly. ICN Ping is designed as a "first line of defense" tool to troubleshoot ICN architectures and protocols. As such, this document is classified as an Experimental RFC. Note that a measurement application is needed to make proper use of ICN Ping in order to compute various statistics, such as average, maximum, and minimum Round-Trip Time (RTT) values, variance in RTTs, and loss rates.
RFC 9507: Information-Centric Networking (ICN) Traceroute Protocol Specification
This document presents the design of an Information-Centric Networking (ICN) Traceroute protocol. This includes the operation of both the client and the forwarder.
In TCP/IP, routing and forwarding are based on IP addresses. To ascertain the route to an IP address and to measure the transit delays, the traceroute utility is commonly used. In Information-Centric Networking (ICN), routing and forwarding are based on name prefixes. To this end, the ability to ascertain the characteristics of at least one of the available routes to a name prefix is a fundamental requirement for instrumentation and network management. These characteristics include, among others, route properties such as which forwarders were transited and the delay incurred through forwarding.
In order to carry out meaningful experimentation and deployment of ICN protocols, new tools analogous to ping and traceroute used for TCP/IP are needed to manage and debug the operation of ICN architectures and protocols. This document describes the design of a management and debugging protocol analogous to the traceroute protocol of TCP/IP; this new management and debugging protocol will aid the experimental deployment of ICN protocols. As the community continues its experimentation with ICN architectures and protocols, the design of ICN Traceroute might change accordingly. ICN Traceroute is designed as a tool to troubleshoot ICN architectures and protocols.