Archive for the ‘RICE’ tag
Compute First Networking (CFN): Distributed Computing meets ICN
Edge- and, more generally, in-network computing is receiving a lot attention in research and industry fora. What are the interesting research questions from a networking perspective? In-network computing can be conceived in many different ways - from active networking, data plane programmability, running virtualized functions, service chaining, to distributed computing. Modern distributed computing frameworks and domain-specific languages provide a convenient and robust way to structure large distributed applications and deploy them on either data center or edge computing environments. The current systems suffer however from the need for a complex underlay of services to allow them to run effectively on existing Internet protocols. These services include centralized schedulers, DNS-based name translation, stateful load balancers, and heavy-weight transport protocols.
Over the past years, we have been working on alternative approaches, trying to find ways for integrating networking and computing in new ways, so that distributed computing can leverage networking capabilities directly and optimize usage of networking and computing resources in a holistic fashion.
From Application-Layer Overlays to In-Network Computing
Domain-specific distributed computing languages like LASP have gained popularity for their ability to simply express complex distributed applications like replicated key-value stores and consensus algorithms. Associated with these languages are execution frameworks like Sapphire and Ray that deal with implementation and deployment issues such as execution scheduling, layering on the network protocol stack, and auto-scaling to match changing workloads. These systems, while elegant and generally exhibiting high performance, are hampered by the daunting complexity hidden in the underlay of services that allow them to run effectively on existing Internet protocols. These services include centralized schedulers, DNS-based name translation, stateful load balancers, and heavy-weight transport protocols.
We claim that, especially for compute functions in the network, it is beneficial to design distributed computing systems in a way that allows for a joint optimization of computing and networking resources by aiming for a tighter integration of computing and networking. For example, leveraging knowledge about data location, available network paths and dynamic network performance can improve system performance and resilience significantly, especially in the presence of dynamic, unpredictable workload changes.
The above goals, we believe, can be met through an alternative approach to network and transport protocols: adopting Information-Centric Networking as the paradigm. ICN, conceived as a networking architecture based on the principle of accessing named data, and specific systems such as NDN and CCNx have accommodated distributed computation through the addition of support for remote function invocation, for example in Named Function Networking, NFN and RICE, Remote Method Invocation in ICN and distributed data set synchronization schemes such as PSync.
Introducing Compute First Networking (CFN)
We propose CFN, a distributed computing environment that provides a general-purpose programming platform with support for both stateless functions and stateful actors. CFN can lay out compute graphs over the available computing platforms in a network to perform flexible load management and performance optimizations, taking into account function/actor location and data location, as well as platform load and network performance.
We have published a paper about CFN at the ACM ICN-2019 Conference that is being presented in Macau today by Michał Król. The paper makes the following contributions:
- CFN marries a state-of-the art distributed computing framework to an ICN underlay through RICE, Remote Method Invocation in ICN. This allows the framework to exploit important properties of ICN such as name-based routing and immutable objects with strong security properties.
- We adopted the rigorous computation graph approach to representing distributed computations, which allows all inputs, state, and outputs (including intermediate results) to be directly visible as named objects. This enables flexible and fine-grained scheduling of computations, caching of results, and tracking state evolution of the computation for logging and debugging.
- CFN maintains the computation graph using Conflict-free Replicated Data Types (CRDTs) and realizes them as named ICN objects. This enables implementation of an efficient and failure-resilient fully- distributed scheduler.
- Through evaluations using ndnSIM simulations, we demonstrate that CFN is applicable to range of different distributed computing scenarios and network topologies.
Resources and Links
- My keynote at IEEE CCNC-2019 on Compute-First Networking (CFN): New Perspectives on Integrating Computing and Networking
- Internet Draft draft-kutscher-coinrg-dir-00 with Jörg Ott and Teemu Kaerkkaeinen on Directions for Computing in the Network (COIN) and the corresponding presentation.
- The CFN paper at ACM ICN-2019: Compute First Networking: Distributed Computing meets ICN. The author team: Michał Król, Spyridon Mastorakis, David Oran, Dirk Kutscher
- CFN builds on our earlier work on RICE, Remote Method Invocation in ICN, authored by: Michał Król, Karim Habak, Karim Habak, Dirk Kutscher, Ioannis Psaras
- 1st ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP)
- IRTF Computing in the Network Proposed Research Group (COIRG)